Python BaseModel和dataclass用法和区别

2024-03-21 12:12

本文主要是介绍Python BaseModel和dataclass用法和区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pydantic 的 BaseModel

Pydantic 是一个数据验证和设置管理的库,它使用 Python 类型注释来定义数据模型的结构。在 Pydantic 中,BaseModel 是所有模型的基类,提供了类型检查、数据转换和验证等功能。下面是一个简单的例子:

from pydantic import BaseModel, validatorclass User(BaseModel):id: intname: strage: int# 定义一个类装饰器来校验age字段@validator('age')def check_age(cls, value):if value <= 0:raise ValueError('年龄必须大于0')return value# 使用 User 类来创建一个实例,并自动进行数据验证
user = User(id=123, name="Alice", age=30)  # 正确,因为年龄大于0
try:user = User(id=124, name="Bob", age=0)  # 将抛出 ValueError,因为年龄不大于0
except ValueError as e:print(e)

在这个例子中,@validator('age')装饰器告诉Pydantic,check_age方法应该用来校验age字段。如果age的值不满足条件(即小于或等于0),校验器将抛出一个ValueError异常,并显示一条错误信息。

当尝试创建一个age字段值不符合要求的User实例时,Pydantic会抛出一个异常,在上面的代码中这个异常被捕获并打印了出来。

Python 的 dataclasses

Python 的 dataclasses 模块提供了一个装饰器和函数来自动添加特殊方法,如 __init__()__repr__(),到用户定义的类中,它用于创建数据类。这是 Python 3.7+ 版本的新特性。下面是一个使用 dataclasses 的例子:

from dataclasses import dataclass@dataclass
class User:id: intname: strage: int# 使用 User 类来创建一个实例
user = User(id=123, name="Alice", age=30)

在这个例子中,User 类被 dataclass 装饰器装饰,这导致自动生成了 __init__()__repr__() 等方法。但是,与 Pydantic 不同,dataclasses 不提供数据验证功能。

区别

  • 数据验证:Pydantic 的 BaseModel 提供数据验证,而 Python 的 dataclasses 不提供。
  • 数据转换:Pydantic BaseModel 可以在实例化时将数据自动转换为正确的类型(如果可能),而 dataclasses 只是简单地接受所提供的数据。
  • 用途:Pydantic 通常用于数据解析和验证,例如在 API 开发中定义请求和响应模型,而 dataclasses 用于简化数据封装,通常在不需要复杂验证和转换的内部代码中使用。

两者都是非常有用的工具,但它们适用于不同的场景。如果需要数据验证和自动类型转换,Pydantic 是一个更好的选择;如果只是想简化类的定义并自动实现一些常见的特殊方法,Python 的 dataclasses 是一个轻量级的解决方案。

BaseModel进阶语法和案例

这篇关于Python BaseModel和dataclass用法和区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832610

相关文章

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

kotlin中的行为组件及高级用法

《kotlin中的行为组件及高级用法》Jetpack中的四大行为组件:WorkManager、DataBinding、Coroutines和Lifecycle,分别解决了后台任务调度、数据驱动UI、异... 目录WorkManager工作原理最佳实践Data Binding工作原理进阶技巧Coroutine

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Windows命令之tasklist命令用法详解(Windows查看进程)

《Windows命令之tasklist命令用法详解(Windows查看进程)》tasklist命令显示本地计算机或远程计算机上当前正在运行的进程列表,命令结合筛选器一起使用,可以按照我们的需求进行过滤... 目录命令帮助1、基本使用2、执行原理2.1、tasklist命令无法使用3、筛选器3.1、根据PID

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word