【人工智能】英文学习材料04(每日一句)

2024-03-21 08:44

本文主要是介绍【人工智能】英文学习材料04(每日一句),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

目录

         Bag of Words (词袋模型)

Generative Pre-trained Transformer (GPT) (生成式预训练变换器)

Tensor Processing Unit (TPU) (张量处理单元)

NVIDIA (英伟达)

OpenAI

Model Fine-Tuning (模型微调)

Model Quantization (模型量化)

Model Deployment (模型部署)

Retrieval-Augmented Generation (RAG) (检索增强型生成器)

Vector Similarity (向量相似度)


01 Bag of Words (词袋模型)

The Bag of Words model is a fundamental text processing approach. It involves transforming text into fixed-length vectors by counting the frequency of each word’s occurrence. This model disregards the grammar and the order of words but provides a simple way to analyze text.

  • fundamental(基本的、根本的)
  • occurrences (出现次数)
  • disregarding (忽略)

02 Generative Pre-trained Transformer (GPT) (生成式预训练变换器)

GPT, or Generative Pre-trained Transformer, represents a cutting-edge AI technology developed by OpenAI. It's designed to generate text that mimics human writing styles by predicting the next word in a sequence, based on the words that precede it. GPT models are pre-trained on a vast corpus of text, allowing them to generate coherent and contextually relevant text across a wide range of topics and styles.

  • represents(代表、表示)
  • mimics(模仿)
  • coherent (连贯的): 逻辑上一致,条理清晰的
  • contextually relevant (语境相关的): 与上下文紧密相关,符合语境的
  • input (输入): 提供给系统的数据或信息

03 Tensor Processing Unit (TPU) (张量处理单元)

Google's Tensor Processing Unit, or TPU, is an advanced hardware accelerator specifically designed to fast-track neural network machine learning processes. TPUs are engineered to process large volumes of data simultaneously, which significantly speeds up the training and inference phases of machine learning models, making them indispensable for complex AI computations.

  • advanced(高级的)
  • hardware(硬件)
  • accelerator(加速器)
  • simultaneously(同时)
  • significantly (显著地): 在很大程度上,明显地
  • speed up (加速): 使某事进行得更快
  • optimize (优化): 使变得最有效或最有效率
  • machine learning computations (机器学习计算): 执行机器学习算法所需的计算过程

04 NVIDIA (英伟达)

NVIDIA is globally recognized for its innovation in the development of graphics processing units (GPUs) for both gaming and professional markets. Beyond gaming, NVIDIA's GPUs have become pivotal in accelerating AI and deep learning tasks, providing the computational power necessary to process complex algorithms and large datasets quickly.

  • gaming(游戏打游戏)
  • graphics processing units (GPUs) (图形处理单元)
  • pivotal (关键的)
  • accelerating(加速器)

05 OpenAI

OpenAI is an AI research lab that dedicates itself to advancing artificial intelligence in a manner that maximizes benefit to humanity. It is known for developing state-of-the-art AI models, including the GPT series, which have significantly contributed to the field of natural language processing and beyond.

  • dedicates(致力于)
  • advancing(推进、进步)
  • manner(方式)
  • maximizes(最大化)

06 Model Fine-Tuning (模型微调)

Model Fine-Tuning is the process of taking a pre-trained AI model and making minor adjustments to its parameters to improve its performance on a specific task. This technique allows for leveraging large, pre-trained models on similar but smaller datasets, optimizing them for particular requirements without the need for extensive training from scratch.

  • minor(较小的)
  • adjusting (调整)
  • parameters(参数)
  • leveraging(撬动)
  • perform better (表现更好)
  • optimizing(优化)
  • extensive(大量的)
  • scratch(从零开始,从头开始)

07 Model Quantization (模型量化)

Model Quantization involves reducing the precision of the numerical values in a machine learning model. This process helps in making the model lighter and faster by decreasing its memory usage and computational requirements, which is particularly beneficial for deploying models on devices with limited resources.

  • numerical(数值的)
  • lighter(更轻量化)
  • memory usage (内存使用)
  • computational requirements (计算要求)
  • deploying (部署)

08 Model Deployment (模型部署)

Model Deployment is the stage in machine learning where a trained model is integrated with an application to perform its intended task in a real-world environment. It involves setting up the model to process live data and provide insights, predictions, or decisions based on that data.

  • stage(阶段)
  • integration (集成)
  • intended(预定的、意图的)
  • insights(洞察、理解)

09 Retrieval-Augmented Generation (RAG) (检索增强型生成器)

Retrieval-Augmented Generation combines the capabilities of a retrieval system, which fetches relevant documents or data, with a generative model, which uses this information to produce new content. This approach enhances the generative model's ability to provide more accurate and contextually appropriate responses.

  • capabilities(能力、功能)
  • retrieval (检索)
  • fetches(获取)
  • approach(方法)
  • contextually(根据上下文,根据语境)
  • appropriate(合适的)

10 Vector Similarity (向量相似度)

Vector Similarity is a measure used to determine the degree of resemblance between two vectors, often applied in NLP to compare the semantic similarity of words, sentences, or documents. High similarity scores indicate a closer relationship or greater similarity between the vectors.

  • measures (测量)
  • degree (程度)
  • semantic similarity (语义相似度)
  • indicate(指示、表明)

以上

君子坐而论道,少年起而行之,共勉

这篇关于【人工智能】英文学习材料04(每日一句)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832255

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

每日一练7:简写单词(含链接)

1.链接 简写单词_牛客题霸_牛客网 2.题目 3.代码1(错误经验) #include <iostream>#include <string>using namespace std;int main() {string s;string ret;int count = 0;while(cin >> s)for(auto a : s){if(count == 0){if( a <=

【每日刷题】Day113

【每日刷题】Day113 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 91. 解码方法 - 力扣(LeetCode) 2. LCR 098. 不同路径 - 力扣(LeetCode) 3. 63. 不同路径 II - 力扣(LeetCode) 1. 91. 解码方法 - 力扣(LeetCode) //思路:动态规划。 cl

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo

[Day 73] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在健康管理中的應用實例 1. 引言 隨著健康管理需求的提升,人工智能(AI)在該領域的應用越來越普遍。AI可以幫助醫療機構提升效率、精準診斷疾病、個性化治療方案,以及進行健康數據分析,從而改善病患的健康狀況。這篇文章將探討AI如何應用於健康管理,並通過具體代碼示例說明其技術實現。 2. AI在健康管理中的主要應用場景 個性化健康建議:通過分析用戶的健康數據,如飲食、運動、睡眠等,AI可