Python 解析json文件 使用Plotly绘制地理散点图

2024-03-21 07:36

本文主要是介绍Python 解析json文件 使用Plotly绘制地理散点图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0、任务说明

1、解析json文件

2、使用Plotly绘制地理散点图

2.1 函数scatter_geo介绍

2.2 官方示例

3、根据json文件数据,准备绘制地理散点图的‘数据结构’

4、完整代码及运行效果


0、任务说明

json文件中存放了关于地震的地理信息。

使用plotly模块绘制地理散点图。

在世界地图上:

1)标识地震位置;

2)用标识的大小表示地震烈度;

3)当鼠标悬停在标识上时,显示详细地震信息;

4)通过拖拽可以滚动查看地图信息;

5)可以放大缩小地图查看信息。

最终将绘制完成结果保存为html文件

1、解析json文件

使用json模块。

要打开的json文件放在执行程序所在目录中的data文件夹下。

使用json.dump(all_eq_data,f,indent=4)语句,改变json的格式,用记事本打开时如下所示,更易查看。

{"type": "FeatureCollection","metadata": {"generated": 1550361461000,"url": "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/1.0_day.geojson","title": "USGS Magnitude 1.0+ Earthquakes, Past Day","status": 200,"api": "1.7.0","count": 158},"features": [{"type": "Feature","properties": {"mag": 0.96,"place": "8km NE of Aguanga, CA","time": 1550360775470,"updated": 1550360993593,"tz": -480,"url": "https://earthquake.usgs.gov/earthquakes/eventpage/ci37532978","detail": "https://earthquake.usgs.gov/earthquakes/feed/v1.0/detail/ci37532978.geojson","felt": null,"cdi": null,"mmi": null,"alert": null,"status": "automatic","tsunami": 0,"sig": 14,"net": "ci","code": "37532978","ids": ",ci37532978,","sources": ",ci,","types": ",geoserve,nearby-cities,origin,phase-data,","nst": 32,"dmin": 0.02648,"rms": 0.15,"gap": 37,"magType": "ml","type": "earthquake","title": "M 1.0 - 8km NE of Aguanga, CA"},"geometry": {"type": "Point","coordinates": [-116.7941667,33.4863333,3.22]},"id": "ci37532978"},

语句all_eq_dicts = all_eq_data['features'],将json文件中‘features’下的所有元素,放在all_eq_dicts中。

语句mags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts],将每个元素中‘properties’下的‘mag’值存在列表mags中。这里使用了列表解析。

import jsonfilename = 'data/eq_data_1_day_m1.json'
with open(filename) as f:all_eq_data = json.load(f)readable_file = 'data/readable_eq_data.json'#重写json文件,使其便于阅读
with open(readable_file,'w') as f:json.dump(all_eq_data,f,indent=4)all_eq_dicts = all_eq_data['features']mags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts]
titles = [eq_dict['properties']['title'] for eq_dict in all_eq_dicts]
longitudes = [eq_dict['geometry']['coordinates'][0] for eq_dict in all_eq_dicts]
latitudes = [eq_dict['geometry']['coordinates'][1] for eq_dict in all_eq_dicts]

2、使用Plotly绘制地理散点图

2.1 函数scatter_geo介绍

Plotly Express 中的 scatter_geo 函数是用于创建地理散点图的函数。它允许用户轻松地在地图上绘制数据点,每个数据点表示一个地理位置,并且可以根据数据中的某些属性来自定义数据点的颜色、大小等。

该函数的基本语法如下:

px.scatter_geo(data_frame, lat=None, lon=None, locations=None, locationmode=None, color=None, size=None, hover_name=None, hover_data=None, projection=None, animation_frame=None, title=None, template=None, width=None, height=None)

其中,主要参数包括(data_frame必须输入,其余根据需要选择使用):

  • data_frame: 包含数据的 DataFrame 对象。
  • latlon: 分别指定纬度和经度数据所在的列名。
  • locations: 指定用于标识地理位置的列名。
  • colorsize: 分别指定数据点的颜色和大小所对应的列名。
  • hover_namehover_data: 分别指定悬停时显示的标签和其他数据。
  • projection: 指定地图投影的类型,如 "equirectangular"、"mercator" 等。
  • animation_frame: 如果要创建动画效果,可以指定用于动画的时间序列数据所在的列名。
  • title: 图表的标题。
  • template: 图表的模板。
  • widthheight: 图表的宽度和高度。

2.2 官方示例

import plotly.express as px'''
px.data.gapminder() 是 Plotly Express 提供的一个函数,
用于加载示例数据集 "gapminder"。
这个数据集包含了关于世界各国在不同年份的人口、GDP 等数据。
.query("year == 2007") 是 Pandas 数据框(DataFrame)对象的一个方法,
用于查询符合特定条件的数据。在这里,它筛选出年份为 2007 年的数据。
'''
df = px.data.gapminder().query("year == 2007")'''
基于给定的数据集 df,创建一个地理散点图,
其中每个点表示一个国家,其位置由 ISO 3166-1 #alpha-3 代码指定,
点的大小表示该国的人口数量。
'''
fig = px.scatter_geo(df, locations="iso_alpha",size="pop", # size of markers, "pop" is one of the columns of gapminder)fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})fig.show()

运行结果:

3、根据json文件数据,准备绘制地理散点图的‘数据结构’

根据第一部分的说明,解析后的json数据是放在四个列表中的,此时这四个列表必须构成DataFrame对象,才能被scatter_geo 函数使用,具体方法如下:

import pandas as pdmags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts]
titles = [eq_dict['properties']['title'] for eq_dict in all_eq_dicts]
longitudes = [eq_dict['geometry']['coordinates'][0] for eq_dict in all_eq_dicts]
latitudes = [eq_dict['geometry']['coordinates'][1] for eq_dict in all_eq_dicts]#根据以上数据创建‘字典’
data = {'mags':mags,'titles':titles,'longitudes':longitudes,'latitudes':latitudes}
# 使用字典创建 DataFrame
df = pd.DataFrame(data)

以上数据中,

mags是地震烈度,决定地图上标志点大小;

titles是地震信息,鼠标悬停在标志点上时显示;

longitudes是经度,决定标志点在地图上的位置;

latitudes是纬度。

4、完整代码及运行效果

import json
import plotly.express as px
import pandas as pd#准备数据
filename = 'data/eq_data_1_day_m1.json'
with open(filename) as f:all_eq_data = json.load(f)all_eq_dicts = all_eq_data['features']mags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts]
titles = [eq_dict['properties']['title'] for eq_dict in all_eq_dicts]
longitudes = [eq_dict['geometry']['coordinates'][0] for eq_dict in all_eq_dicts]
latitudes = [eq_dict['geometry']['coordinates'][1] for eq_dict in all_eq_dicts]#根据以上数据创建‘字典’
data = {'mags':mags,'titles':titles,'longitudes':longitudes,'latitudes':latitudes}
# 使用字典创建 DataFrame
df = pd.DataFrame(data)
fig = px.scatter_geo(df,lat='latitudes',lon='longitudes',size='mags',hover_name='titles')fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})fig.write_html('global_earthquakes.html')
fig.show()

这篇关于Python 解析json文件 使用Plotly绘制地理散点图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832099

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —