Python 解析json文件 使用Plotly绘制地理散点图

2024-03-21 07:36

本文主要是介绍Python 解析json文件 使用Plotly绘制地理散点图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0、任务说明

1、解析json文件

2、使用Plotly绘制地理散点图

2.1 函数scatter_geo介绍

2.2 官方示例

3、根据json文件数据,准备绘制地理散点图的‘数据结构’

4、完整代码及运行效果


0、任务说明

json文件中存放了关于地震的地理信息。

使用plotly模块绘制地理散点图。

在世界地图上:

1)标识地震位置;

2)用标识的大小表示地震烈度;

3)当鼠标悬停在标识上时,显示详细地震信息;

4)通过拖拽可以滚动查看地图信息;

5)可以放大缩小地图查看信息。

最终将绘制完成结果保存为html文件

1、解析json文件

使用json模块。

要打开的json文件放在执行程序所在目录中的data文件夹下。

使用json.dump(all_eq_data,f,indent=4)语句,改变json的格式,用记事本打开时如下所示,更易查看。

{"type": "FeatureCollection","metadata": {"generated": 1550361461000,"url": "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/1.0_day.geojson","title": "USGS Magnitude 1.0+ Earthquakes, Past Day","status": 200,"api": "1.7.0","count": 158},"features": [{"type": "Feature","properties": {"mag": 0.96,"place": "8km NE of Aguanga, CA","time": 1550360775470,"updated": 1550360993593,"tz": -480,"url": "https://earthquake.usgs.gov/earthquakes/eventpage/ci37532978","detail": "https://earthquake.usgs.gov/earthquakes/feed/v1.0/detail/ci37532978.geojson","felt": null,"cdi": null,"mmi": null,"alert": null,"status": "automatic","tsunami": 0,"sig": 14,"net": "ci","code": "37532978","ids": ",ci37532978,","sources": ",ci,","types": ",geoserve,nearby-cities,origin,phase-data,","nst": 32,"dmin": 0.02648,"rms": 0.15,"gap": 37,"magType": "ml","type": "earthquake","title": "M 1.0 - 8km NE of Aguanga, CA"},"geometry": {"type": "Point","coordinates": [-116.7941667,33.4863333,3.22]},"id": "ci37532978"},

语句all_eq_dicts = all_eq_data['features'],将json文件中‘features’下的所有元素,放在all_eq_dicts中。

语句mags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts],将每个元素中‘properties’下的‘mag’值存在列表mags中。这里使用了列表解析。

import jsonfilename = 'data/eq_data_1_day_m1.json'
with open(filename) as f:all_eq_data = json.load(f)readable_file = 'data/readable_eq_data.json'#重写json文件,使其便于阅读
with open(readable_file,'w') as f:json.dump(all_eq_data,f,indent=4)all_eq_dicts = all_eq_data['features']mags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts]
titles = [eq_dict['properties']['title'] for eq_dict in all_eq_dicts]
longitudes = [eq_dict['geometry']['coordinates'][0] for eq_dict in all_eq_dicts]
latitudes = [eq_dict['geometry']['coordinates'][1] for eq_dict in all_eq_dicts]

2、使用Plotly绘制地理散点图

2.1 函数scatter_geo介绍

Plotly Express 中的 scatter_geo 函数是用于创建地理散点图的函数。它允许用户轻松地在地图上绘制数据点,每个数据点表示一个地理位置,并且可以根据数据中的某些属性来自定义数据点的颜色、大小等。

该函数的基本语法如下:

px.scatter_geo(data_frame, lat=None, lon=None, locations=None, locationmode=None, color=None, size=None, hover_name=None, hover_data=None, projection=None, animation_frame=None, title=None, template=None, width=None, height=None)

其中,主要参数包括(data_frame必须输入,其余根据需要选择使用):

  • data_frame: 包含数据的 DataFrame 对象。
  • latlon: 分别指定纬度和经度数据所在的列名。
  • locations: 指定用于标识地理位置的列名。
  • colorsize: 分别指定数据点的颜色和大小所对应的列名。
  • hover_namehover_data: 分别指定悬停时显示的标签和其他数据。
  • projection: 指定地图投影的类型,如 "equirectangular"、"mercator" 等。
  • animation_frame: 如果要创建动画效果,可以指定用于动画的时间序列数据所在的列名。
  • title: 图表的标题。
  • template: 图表的模板。
  • widthheight: 图表的宽度和高度。

2.2 官方示例

import plotly.express as px'''
px.data.gapminder() 是 Plotly Express 提供的一个函数,
用于加载示例数据集 "gapminder"。
这个数据集包含了关于世界各国在不同年份的人口、GDP 等数据。
.query("year == 2007") 是 Pandas 数据框(DataFrame)对象的一个方法,
用于查询符合特定条件的数据。在这里,它筛选出年份为 2007 年的数据。
'''
df = px.data.gapminder().query("year == 2007")'''
基于给定的数据集 df,创建一个地理散点图,
其中每个点表示一个国家,其位置由 ISO 3166-1 #alpha-3 代码指定,
点的大小表示该国的人口数量。
'''
fig = px.scatter_geo(df, locations="iso_alpha",size="pop", # size of markers, "pop" is one of the columns of gapminder)fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})fig.show()

运行结果:

3、根据json文件数据,准备绘制地理散点图的‘数据结构’

根据第一部分的说明,解析后的json数据是放在四个列表中的,此时这四个列表必须构成DataFrame对象,才能被scatter_geo 函数使用,具体方法如下:

import pandas as pdmags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts]
titles = [eq_dict['properties']['title'] for eq_dict in all_eq_dicts]
longitudes = [eq_dict['geometry']['coordinates'][0] for eq_dict in all_eq_dicts]
latitudes = [eq_dict['geometry']['coordinates'][1] for eq_dict in all_eq_dicts]#根据以上数据创建‘字典’
data = {'mags':mags,'titles':titles,'longitudes':longitudes,'latitudes':latitudes}
# 使用字典创建 DataFrame
df = pd.DataFrame(data)

以上数据中,

mags是地震烈度,决定地图上标志点大小;

titles是地震信息,鼠标悬停在标志点上时显示;

longitudes是经度,决定标志点在地图上的位置;

latitudes是纬度。

4、完整代码及运行效果

import json
import plotly.express as px
import pandas as pd#准备数据
filename = 'data/eq_data_1_day_m1.json'
with open(filename) as f:all_eq_data = json.load(f)all_eq_dicts = all_eq_data['features']mags = [eq_dict['properties']['mag'] for eq_dict in all_eq_dicts]
titles = [eq_dict['properties']['title'] for eq_dict in all_eq_dicts]
longitudes = [eq_dict['geometry']['coordinates'][0] for eq_dict in all_eq_dicts]
latitudes = [eq_dict['geometry']['coordinates'][1] for eq_dict in all_eq_dicts]#根据以上数据创建‘字典’
data = {'mags':mags,'titles':titles,'longitudes':longitudes,'latitudes':latitudes}
# 使用字典创建 DataFrame
df = pd.DataFrame(data)
fig = px.scatter_geo(df,lat='latitudes',lon='longitudes',size='mags',hover_name='titles')fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})fig.write_html('global_earthquakes.html')
fig.show()

这篇关于Python 解析json文件 使用Plotly绘制地理散点图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832099

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud