numpy 学习汇总45 - 数组选择设置(11种方法)( 初步学习 tcy)

2024-03-20 09:48

本文主要是介绍numpy 学习汇总45 - 数组选择设置(11种方法)( 初步学习 tcy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选择设置  2018/6/24     2018/11/30=============================================================================
1.函数np.s_[:]                                       #数组索引
np.index_exp[2::2]                             #建立数组索引元组的更好方法a.item(* args) 复制元素到python标量# 参数:None:len(a)=1; Int_type:数组平面索引;Int_types:元祖
a.itemset(* args)更改数组中数值       # 参数:参数1int 或元祖,位置(x,[y]);参数2更改值
a.getfield(dtype,offset = 0 )        #以给定类型返回给定数组的字段。np.take(a,indices,axis = None,out = None,mode ='raise' )# 获取(默认1D )元素;优于花式索引
np.put(a,ind,v,mode ='raise' )                          # 设置1D元素;等价a.flat[ind] = vnp.nonzero(a)                                           #返回输入数组中非零元素的索引。np.select(condlist, choicelist, default=0)             #返回从选择列表中的元素绘制的数组,取决于条件
np.choose(a,choice,out = None,mode ='raise' )#根据条件选择
np.where(condition, [x, y])                  #返回输入数组中满足给定条件的元素的索引。
np.extract()                                 #根据某个条件从数组中抽取元素,返回满条件元素np.compress(condition,axis = None,out = None )# 沿给定的轴返回此数组的选定切片=============================================================================
2.实例# 实例1:np.s_-数组索引
np.s_[2::2]                                 #slice(2, None, 2)
np.index_exp[2::2]                          #(slice(2, None, 2),)
np.array([0, 1, 2, 3, 4])[np.s_[2::2]]      # array([2, 4])
np.array([0, 1, 2, 3, 4])[np.index_exp[2::2]] #array([2, 4])# 实例2:item-获取标量
a=np.arange(12).reshape(3,4)
a.item(7)                #7     获取标量
a.item(0,2,)             #2     获取标量    等价a.item((0,2))# 实例3:itemset-设置标量
a.itemset(7,-7)          #修改元素为-7
a                        #array([[ 0,  1,  2,  3],[ 4,  5,  6, -7],[ 8,  9, 10, 11]])
a.itemset((0,2),-2)      #修改元素为-2
a                        #array([[ 0,  1, -2,  3], [ 4,  5,  6, -7],[ 8,  9, 10, 11]])# 实例3:getfield-获取数值字段
x = np.diag([1.+1.j]*2)
x[1, 1] = 2 + 4.j
x                                    # array([[ 1.+1.j,  0.+0.j],[ 0.+0.j,  2.+4.j]])
x.getfield(np.float64)               # array([[ 1.,  0.], [ 0.,  2.]])# 选择8字节偏移量得到虚部视图
x.getfield(np.float64, offset=8)# array([[ 1.,  0.], [ 0.,  4.]])=============================================================================
# 实例4:take-选取元素
a = np.array([10, 11, 12, 13, 14, 15])np.take(a, [0,1,2,3])          # array([10, 11, 12, 13])
np.take(a, [[0, 1], [2, 3]])   # array([[10, 11],[12, 13]])a=np.arange(10,22).reshape(3,4)
np.take(a,[0,1,2,3])           # array([10, 11, 12, 13])
np.take(a,[[0,1],[2,3]])       # array([[10, 11], [12, 13]])a.take([1,2],axis=0)           # array([[14, 15, 16, 17],[18, 19, 20, 21]])    #选取第2,3行
a.take([1,2],axis=1)           # array([[11, 12],[15, 16], [19, 20]])          #选取第2,3列#实例5:put-替换选定位置数据
a = np.arange(5)
a.put([1,2],-1)                            #将选定的元素用-1替
a                                          #array([ 0, -1, -1,  3,  4])np.put(a, [4,3,2,1], [-4,-3,-2,-1 ])#选定元素用list替换
a                                   #array([ 0, -1, -2, -3, -4])# 实例6:nonzero-非零元素索引
np.nonzero ([3,0,2,5,0,6])# (array([0, 2, 3, 5], dtype=int64),)
a = np.array([[3,4,0],[0,2,1],[5,0,6]])
b=np.nonzero (a)            # (array([0, 0, 1, 1, 2, 2], dtype=int64),array([0, 1, 1, 2, 0, 2], dtype=int64))
np.transpose(b)             # array([[0, 0], [0, 1], [1, 1],[1, 2],[2, 0],[2, 2]], dtype=int64)
a[b]                        # array([3, 4, 2, 1, 5, 6])# 一个常用用法是查找条件为True数组的索引
a = np.array([[1,2,3],[4,5,6]])
a > 3                       # array([[False, False, False],[ True, True, True]])
np.nonzero(a > 3)           # 结果同下
(a > 3).nonzero()           # (array([1, 1, 1], dtype=int64), array([0, 1, 2], dtype=int64))np.count_nonzero(a,axis = None )# 计算数组中非零值的数量a。
np.count_nonzero(a)=============================================================================
# 实例7:select-根据条件选择相应的值
x = np.arange(10)
condlist = [x<3, x>5]
choicelist = [x, x**2]
np.select(condlist, choicelist)    # array([ 0,  1,  2,  0,  0,  0, 36, 49, 64, 81])
np.select(condlist, choicelist,-1) # array([ 0,  1,  2, -1, -1, -1, 36, 49, 64, 81])# 实例8:choose-根据条件选择
result=np.array([0,0,0,0])
a=np.choose([0,0,1,2],[0,-1,-2,-3,-4],out=result)        #a为1维,choices为1维
a   # array([ 0,  0, -1, -2])   result==ab=np.choose([[0,1,2],[3,4,5],[5,4,3]],[0,-1,-2,-3,-4,-5])#a为2维,choices为1维
b   # array([[ 0, -1, -2],[-3, -4, -5],[-5, -4, -3]])c=np.choose([4,3,2,1,0],                                 #a为1维,choices为2维[[0,-1,-2,-3,-4],[10,11,12,13,14],[20,21,22,23,24],[30,31,32,33,34],[40,41,42,43,44]])
c   # array([40, 31, 22, 13, -4])    4---0 对应choices(4,0) (3,1) (2,2) (1,3) (0,4)d=np.choose([[4,3,2,1,0],[0,1,2,3,4],[0,1,2,3,4]],        #a为2维,choices为2维[[0,-1,-2,-3,-4],[10,11,12,13,14],[20,21,22,23,24],[30,31,32,33,34],[40,41,42,43,44]])
d   # array([[40, 31, 22, 13, -4], [ 0, 11, 22, 33, 44],[ 0, 11, 22, 33, 44]])# 实例9:where-根据条件选择
x = np.arange(9).reshape(3,  3)
y = np.where(x >  3)# (array([1, 1, 2, 2, 2], dtype=int64), array([1, 2, 0, 1, 2], dtype=int64))
x[y]                #array([4, 5, 6, 7, 8])# 实例10:where-根据条件选择
x = np.arange(9.).reshape(3,  3)
condition = np.mod(x,2) == 0# 定义条件, 选择偶数元素
condition                   # array([[True,False,True],[False,True,False],[True,False,True]])
np.extract(condition, x)    # array([0., 2., 4., 6., 8.])   # 使用条件提取元素============================================================================
# 实例11:compress-沿轴返回此数组选定切片np.compress(condition,axis = None,out = None )# 沿给定的轴返回此数组的选定切片a = np.array([[1, 2], [3, 4], [5, 6]])
b1=np.compress([1, 1,0], a, axis=0)  # 按行选取,前为逻辑条件,选取第1,2行
b2=np.compress([4, True], a, axis=1) # 按列选取,前为逻辑条件,表示选取第1,2列#在平面阵列上工作时不会沿着轴返回切片,而是选择元素。
b3=np.compress([2, True,0,1,4], a)# 条件为真时选一个元素;逻辑条件最多6个b1= [[1 2][3 4][5 6]]
b2= [[1 2][3 4][5 6]]
b3= [1 2 4 5]=============================================================================
3.备注:
np.choose(a,choice,out = None,mode ='raise' )#根据条件选择# 参数
# a :int       #数组元素0~n-1
# choices:  #要操作数组,维度和a匹配
# out:        #接收运算结果维度和 a 一样
# mode:#raise默认,a中元素不能超过 n
#             #clip:a 中的元素如小于0将其变为0,如大于n-1变为n-1
#             #wrap:将a中的值 value变为value mod n,即值除以n余数。=============================================================================

这篇关于numpy 学习汇总45 - 数组选择设置(11种方法)( 初步学习 tcy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829070

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举