python线性插值

2024-03-20 02:28
文章标签 python 线性插值

本文主要是介绍python线性插值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

假设有一个一维数组,但是此数组中只有部分位置上有值,其它位置数据缺失,现在想用线性插值的方法将其填充。

示例代码:

import numpy as np# 假设你有一个长度为171的数组,名为full_data,其中有13个数据点
# 用 None 表示缺失的数据点
full_data = [None] * 171# 假设你已经有了13个数据点的索引和值
known_indices = [11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 121, 141, 161]
known_values = [0.207, 0.217, 0.184, 0.177, 0.162, 0.312,0.253, 0.317, 0.333, 0.336, 0.352, 0.288, 0.295]# 使用 NumPy 的interp函数进行线性插值
# 注意:interp函数要求已知数据点的索引必须是单调递增的
# 这里假设已知索引是单调递增的
full_indices = np.arange(len(full_data))
full_data = np.interp(full_indices, known_indices, known_values)# 打印结果
print(full_data)

结果展示:

[0.207   0.207   0.207   0.207   0.207   0.207   0.207   0.207   0.2070.207   0.207   0.207   0.208   0.209   0.21    0.211   0.212   0.2130.214   0.215   0.216   0.217   0.2137  0.2104  0.2071  0.2038  0.20050.1972  0.1939  0.1906  0.1873  0.184   0.1833  0.1826  0.1819  0.18120.1805  0.1798  0.1791  0.1784  0.1777  0.177   0.1755  0.174   0.17250.171   0.1695  0.168   0.1665  0.165   0.1635  0.162   0.177   0.1920.207   0.222   0.237   0.252   0.267   0.282   0.297   0.312   0.30610.3002  0.2943  0.2884  0.2825  0.2766  0.2707  0.2648  0.2589  0.2530.2594  0.2658  0.2722  0.2786  0.285   0.2914  0.2978  0.3042  0.31060.317   0.3186  0.3202  0.3218  0.3234  0.325   0.3266  0.3282  0.32980.3314  0.333   0.3333  0.3336  0.3339  0.3342  0.3345  0.3348  0.33510.3354  0.3357  0.336   0.3368  0.3376  0.3384  0.3392  0.34    0.34080.3416  0.3424  0.3432  0.344   0.3448  0.3456  0.3464  0.3472  0.3480.3488  0.3496  0.3504  0.3512  0.352   0.3488  0.3456  0.3424  0.33920.336   0.3328  0.3296  0.3264  0.3232  0.32    0.3168  0.3136  0.31040.3072  0.304   0.3008  0.2976  0.2944  0.2912  0.288   0.28835 0.28870.28905 0.2894  0.28975 0.2901  0.29045 0.2908  0.29115 0.2915  0.291850.2922  0.29255 0.2929  0.29325 0.2936  0.29395 0.2943  0.29465 0.2950.295   0.295   0.295   0.295   0.295   0.295   0.295   0.295   0.295  ]

线性插值绘图代码:

import matplotlib.pyplot as plt
import numpy as np# 数据
x = [11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 121, 141, 161]
y = [0.207, 0.217, 0.184, 0.177, 0.162, 0.312,0.253, 0.317, 0.333, 0.336, 0.352, 0.288, 0.295]
x1 = np.arange(0, 171)
y1 = [0.207, 0.207, 0.207, 0.207, 0.207, 0.207, 0.207, 0.207, 0.207,0.207, 0.207, 0.207, 0.208, 0.209, 0.21, 0.211, 0.212, 0.213,0.214, 0.215, 0.216, 0.217, 0.2137, 0.2104, 0.2071, 0.2038, 0.2005,0.1972, 0.1939, 0.1906, 0.1873, 0.184, 0.1833, 0.1826, 0.1819, 0.1812,0.1805, 0.1798, 0.1791, 0.1784, 0.1777, 0.177, 0.1755, 0.174, 0.1725,0.171, 0.1695, 0.168, 0.1665, 0.165, 0.1635, 0.162, 0.177, 0.192,0.207, 0.222, 0.237, 0.252, 0.267, 0.282, 0.297, 0.312, 0.3061,0.3002, 0.2943, 0.2884, 0.2825, 0.2766, 0.2707, 0.2648, 0.2589, 0.253,0.2594, 0.2658, 0.2722, 0.2786, 0.285, 0.2914, 0.2978, 0.3042, 0.3106,0.317, 0.3186, 0.3202, 0.3218, 0.3234, 0.325, 0.3266, 0.3282, 0.3298,0.3314, 0.333, 0.3333, 0.3336, 0.3339, 0.3342, 0.3345, 0.3348, 0.3351,0.3354, 0.3357, 0.336, 0.3368, 0.3376, 0.3384, 0.3392, 0.34, 0.3408,0.3416, 0.3424, 0.3432, 0.344, 0.3448, 0.3456, 0.3464, 0.3472, 0.348,0.3488, 0.3496, 0.3504, 0.3512, 0.352, 0.3488, 0.3456, 0.3424, 0.3392,0.336, 0.3328, 0.3296, 0.3264, 0.3232, 0.32, 0.3168, 0.3136, 0.3104,0.3072, 0.304, 0.3008, 0.2976, 0.2944, 0.2912, 0.288, 0.28835, 0.2887,0.28905, 0.2894, 0.28975, 0.2901, 0.29045, 0.2908, 0.29115, 0.2915, 0.29185,0.2922, 0.29255, 0.2929, 0.29325, 0.2936, 0.29395, 0.2943, 0.29465, 0.295,0.295, 0.295, 0.295, 0.295, 0.295, 0.295, 0.295, 0.295, 0.295]# 绘制折线图
plt.scatter(x, y, color='red', label='pre-interpolation')
plt.plot(x, y, color='pink')
# dashes设置虚线与虚线之间的间隔
plt.plot(x1, y1, alpha=1, linestyle='--',color='blue', dashes=(10, 10), label='post-interpolation')# 添加标题和标签
plt.xlabel('X-axis')
plt.ylabel('Y-axis')plt.legend()# 显示图形
plt.show()

结果展示:
在这里插入图片描述
从图片可以看出,线性插值即是将两点连成直线,插值的数据即是直线上的数据。

这篇关于python线性插值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828001

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合