使用Python进行数据库连接与操作SQLite和MySQL【第144篇—SQLite和MySQL】

2024-03-19 16:52

本文主要是介绍使用Python进行数据库连接与操作SQLite和MySQL【第144篇—SQLite和MySQL】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

👽发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。

使用Python进行数据库连接与操作:SQLite和MySQL

在现代应用程序开发中,与数据库进行交互是至关重要的一环。Python提供了强大的库来连接和操作各种类型的数据库,其中包括SQLite和MySQL。本文将介绍如何使用Python连接这两种数据库,并进行基本的操作,包括创建表、插入数据、查询数据等。

1. 安装必要的库

首先,我们需要安装Python的数据库驱动程序,以便与SQLite和MySQL进行交互。对于SQLite,Python自带了支持;而对于MySQL,我们需要安装额外的库,如mysql-connector-python

# 安装 MySQL 连接器
pip install mysql-connector-python

2. 连接SQLite数据库

SQLite是一种轻量级的嵌入式数据库,无需服务器即可使用。以下是如何连接并操作SQLite数据库的示例代码:

import sqlite3# 连接到 SQLite 数据库
conn = sqlite3.connect('example.db')# 创建一个游标对象
cursor = conn.cursor()# 创建表
cursor.execute('''CREATE TABLE IF NOT EXISTS users(id INTEGER PRIMARY KEY, name TEXT, age INTEGER)''')# 插入数据
cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Alice', 30))
cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Bob', 25))# 查询数据
cursor.execute("SELECT * FROM users")
rows = cursor.fetchall()
for row in rows:print(row)# 提交并关闭连接
conn.commit()
conn.close()

3. 连接MySQL数据库

MySQL是一种常见的关系型数据库管理系统。使用Python连接MySQL需要使用相应的库,比如mysql-connector-python。以下是连接并操作MySQL数据库的示例代码:

import mysql.connector# 连接到 MySQL 数据库
conn = mysql.connector.connect(host="localhost",user="username",password="password",database="mydatabase"
)# 创建一个游标对象
cursor = conn.cursor()# 创建表
cursor.execute('''CREATE TABLE IF NOT EXISTS users(id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255), age INT)''')# 插入数据
sql = "INSERT INTO users (name, age) VALUES (%s, %s)"
val = ("Alice", 30)
cursor.execute(sql, val)# 查询数据
cursor.execute("SELECT * FROM users")
rows = cursor.fetchall()
for row in rows:print(row)# 提交并关闭连接
conn.commit()
conn.close()

4. 代码解析

  • 连接数据库:使用sqlite3.connect()连接SQLite数据库,使用mysql.connector.connect()连接MySQL数据库。

  • 创建表:通过执行SQL语句创建表,使用cursor.execute()方法执行。

  • 插入数据:执行插入数据的SQL语句,使用cursor.execute()方法并传入参数。

  • 查询数据:执行查询数据的SQL语句,使用cursor.execute()方法,然后使用cursor.fetchall()获取所有查询结果。

  • 提交和关闭连接:对于SQLite,使用conn.commit()提交事务并使用conn.close()关闭连接。对于MySQL,同样使用conn.commit()提交事务,但需要使用conn.close()关闭连接。

通过这些示例代码,你可以轻松地使用Python连接和操作SQLite和MySQL数据库。务必记住在实际应用中,要处理好异常情况,并采取安全措施,如防止SQL注入等。

5. 数据库连接参数

在连接数据库时,需要提供一些参数以确保正确的连接。对于SQLite,只需提供数据库文件的路径即可。而对于MySQL,除了数据库名称外,还需要提供主机名、用户名和密码等信息。

  • 对于SQLite连接:

    • sqlite3.connect('example.db')
  • 对于MySQL连接:

    conn = mysql.connector.connect(host="localhost",user="username",password="password",database="mydatabase"
    )
    

6. 数据库操作的异常处理

在实际应用中,数据库操作可能会出现各种异常情况,比如连接失败、SQL语法错误等。因此,在进行数据库操作时,务必添加适当的异常处理机制,以提高程序的健壮性和稳定性。

以下是一个简单的异常处理示例:

import sqlite3
import mysql.connectortry:# SQLite 连接conn_sqlite = sqlite3.connect('example.db')cursor_sqlite = conn_sqlite.cursor()# MySQL 连接conn_mysql = mysql.connector.connect(host="localhost",user="username",password="password",database="mydatabase")cursor_mysql = conn_mysql.cursor()# 进行数据库操作(省略)except sqlite3.Error as e:print("SQLite error:", e)except mysql.connector.Error as e:print("MySQL error:", e)finally:# 关闭连接if conn_sqlite:conn_sqlite.close()if conn_mysql:conn_mysql.close()

7. 参数化查询

在执行SQL语句时,尤其是涉及用户输入的情况下,应该使用参数化查询来防止SQL注入攻击。参数化查询可以确保用户输入不会被误解为SQL代码的一部分。

下面是一个使用参数化查询的示例:

import sqlite3
import mysql.connector# SQLite 连接
conn_sqlite = sqlite3.connect('example.db')
cursor_sqlite = conn_sqlite.cursor()# MySQL 连接
conn_mysql = mysql.connector.connect(host="localhost",user="username",password="password",database="mydatabase"
)
cursor_mysql = conn_mysql.cursor()# 参数化查询
name = "Alice"
age = 30# SQLite 参数化查询
cursor_sqlite.execute("INSERT INTO users (name, age) VALUES (?, ?)", (name, age))# MySQL 参数化查询
sql = "INSERT INTO users (name, age) VALUES (%s, %s)"
val = (name, age)
cursor_mysql.execute(sql, val)# 提交事务并关闭连接
conn_sqlite.commit()
conn_sqlite.close()conn_mysql.commit()
conn_mysql.close()

8. ORM框架

ORM(Object-Relational Mapping)框架可以将数据库表的行映射为Python对象,简化了数据库操作。在Python中,有许多流行的ORM框架,比如SQLAlchemy、Django的ORM等。这些框架提供了高级的抽象和功能,使得与数据库的交互更加方便和直观。

以下是一个使用SQLAlchemy进行数据库操作的示例:

from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker# 创建引擎
engine = create_engine('sqlite:///example.db', echo=True)# 声明基类
Base = declarative_base()# 定义映射类
class User(Base):__tablename__ = 'users'id = Column(Integer, primary_key=True)name = Column(String)age = Column(Integer)# 创建数据表
Base.metadata.create_all(engine)# 创建会话
Session = sessionmaker(bind=engine)
session = Session()# 插入数据
user1 = User(name='Alice', age=30)
user2 = User(name='Bob', age=25)
session.add(user1)
session.add(user2)
session.commit()# 查询数据
users = session.query(User).all()
for user in users:print(user.id, user.name, user.age)# 关闭会话
session.close()

9. 使用SQLite内存数据库

除了连接到文件中的SQLite数据库,还可以使用SQLite内存数据库。SQLite内存数据库完全存储在RAM中,对于临时性的数据处理或测试非常方便。

以下是一个使用SQLite内存数据库的示例:

import sqlite3# 连接到内存数据库
conn = sqlite3.connect(':memory:')# 创建一个游标对象
cursor = conn.cursor()# 创建表
cursor.execute('''CREATE TABLE users(id INTEGER PRIMARY KEY, name TEXT, age INTEGER)''')# 插入数据
cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Alice', 30))
cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Bob', 25))# 查询数据
cursor.execute("SELECT * FROM users")
rows = cursor.fetchall()
for row in rows:print(row)# 提交并关闭连接
conn.commit()
conn.close()

10. 数据库连接池

在高并发的应用中,频繁地打开和关闭数据库连接会消耗大量资源。为了提高性能,可以使用数据库连接池技术,将数据库连接预先创建好并保存在池中,需要时从池中获取连接,使用完毕后归还到池中。

以下是使用sqlitepool库实现SQLite数据库连接池的示例:

from sqlitepool import ConnectionPool# 创建数据库连接池
pool = ConnectionPool('example.db', max_connections=5)# 从连接池中获取连接
conn = pool.getconn()# 创建游标对象
cursor = conn.cursor()# 执行查询
cursor.execute("SELECT * FROM users")
rows = cursor.fetchall()
for row in rows:print(row)# 释放连接回连接池
pool.putconn(conn)

11. 性能优化

在进行大规模数据操作时,需要考虑性能优化。一些常见的性能优化策略包括:

  • 使用索引来加速查询。
  • 合理设计数据库结构,避免过度规范化或反规范化。
  • 批量操作数据,减少数据库交互次数。
  • 缓存查询结果,减少重复查询数据库的次数。

12. 使用异步数据库库

随着异步编程的流行,出现了许多支持异步操作的数据库库,如aiosqliteaiomysql。这些库可以与异步框架(如asyncio)结合使用,提高程序的并发性能。

以下是一个使用aiosqlite库进行异步SQLite数据库操作的示例:

import asyncio
import aiosqliteasync def main():# 连接到 SQLite 数据库async with aiosqlite.connect('example.db') as db:# 创建一个游标对象cursor = await db.cursor()# 创建表await cursor.execute('''CREATE TABLE IF NOT EXISTS users(id INTEGER PRIMARY KEY, name TEXT, age INTEGER)''')# 插入数据await cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Alice', 30))await cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Bob', 25))# 查询数据await cursor.execute("SELECT * FROM users")rows = await cursor.fetchall()for row in rows:print(row)# 运行异步主程序
asyncio.run(main())

13. 数据库迁移

在实际项目中,随着需求的变化,可能需要对数据库结构进行修改,这时候就需要进行数据库迁移(Migration)。数据库迁移工具可以帮助我们管理数据库结构变更的过程,并确保数据的一致性。

对于SQLite,可以使用sqlite3自带的支持。对于MySQL等数据库,常用的迁移工具包括Alembicdjango.db.migrations等。

以下是一个简单的数据库迁移示例(以SQLite为例):

import sqlite3# 连接到 SQLite 数据库
conn = sqlite3.connect('example.db')
cursor = conn.cursor()# 执行迁移操作(修改表结构)
cursor.execute("ALTER TABLE users ADD COLUMN email TEXT")# 提交并关闭连接
conn.commit()
conn.close()

14. 备份与恢复

定期备份数据库是保障数据安全的重要措施之一。备份可以通过数据库管理工具或编程方式来实现,具体方法取决于数据库类型和需求。

以下是一个简单的备份数据库的示例(以SQLite为例):

import shutil# 备份数据库文件
shutil.copyfile('example.db', 'example_backup.db')

在实际应用中,备份数据库时需要考虑数据库是否处于活动状态、备份文件存储位置、备份周期等因素。

15. 使用环境变量管理数据库连接信息

在实际项目中,将数据库连接信息硬编码在代码中可能不够安全或不够灵活。一种更好的做法是使用环境变量来管理敏感信息,比如数据库的主机名、用户名和密码等。

以下是一个使用环境变量管理数据库连接信息的示例:

import os
import sqlite3
import mysql.connector# 从环境变量中获取数据库连接信息
DB_HOST = os.getenv('DB_HOST', 'localhost')
DB_USER = os.getenv('DB_USER', 'username')
DB_PASSWORD = os.getenv('DB_PASSWORD', 'password')
DB_NAME = os.getenv('DB_NAME', 'mydatabase')# SQLite 连接
conn_sqlite = sqlite3.connect('example.db')
cursor_sqlite = conn_sqlite.cursor()# MySQL 连接
conn_mysql = mysql.connector.connect(host=DB_HOST,user=DB_USER,password=DB_PASSWORD,database=DB_NAME
)
cursor_mysql = conn_mysql.cursor()# 进行数据库操作(省略)# 关闭连接
conn_sqlite.close()
conn_mysql.close()

通过使用环境变量,我们可以轻松地在不同的环境中切换数据库连接信息,而无需修改代码。

16. 使用配置文件管理数据库连接信息

除了使用环境变量,还可以使用配置文件来管理数据库连接信息。这种方法更加灵活,可以根据需要配置不同的环境,如开发环境、测试环境和生产环境等。

以下是一个使用配置文件管理数据库连接信息的示例:

import configparser
import sqlite3
import mysql.connector# 从配置文件中读取数据库连接信息
config = configparser.ConfigParser()
config.read('config.ini')DB_HOST = config.get('Database', 'host')
DB_USER = config.get('Database', 'user')
DB_PASSWORD = config.get('Database', 'password')
DB_NAME = config.get('Database', 'database')# SQLite 连接
conn_sqlite = sqlite3.connect('example.db')
cursor_sqlite = conn_sqlite.cursor()# MySQL 连接
conn_mysql = mysql.connector.connect(host=DB_HOST,user=DB_USER,password=DB_PASSWORD,database=DB_NAME
)
cursor_mysql = conn_mysql.cursor()# 进行数据库操作(省略)# 关闭连接
conn_sqlite.close()
conn_mysql.close()

通过配置文件的方式,我们可以将数据库连接信息集中管理,便于维护和修改。

17. 数据库连接的安全性考虑

在连接数据库时,需要考虑安全性问题,特别是涉及到密码和敏感信息的处理。一些常见的安全性措施包括:

  • 不要将敏感信息硬编码在代码中,而是使用环境变量或配置文件管理。
  • 使用加密技术保护敏感信息在传输过程中的安全性。
  • 使用强密码,并定期更换密码。
  • 限制数据库用户的权限,避免赋予过高的权限。

通过采取这些安全性措施,可以有效保护数据库连接信息和数据的安全。

总结

本文介绍了使用Python进行数据库连接与操作的多种方法和技术。首先,我们学习了如何使用Python连接和操作SQLite和MySQL数据库,包括创建表、插入数据、查询数据等基本操作。然后,我们探讨了一些高级技术,如参数化查询、ORM框架、异步数据库库、数据库迁移、备份与恢复等,这些技术可以提高数据库操作的效率和安全性。此外,我们还介绍了如何使用环境变量和配置文件来管理数据库连接信息,以及一些数据库连接的安全性考虑。通过这些技术和方法,我们可以更好地管理和保护数据库,使得数据库编程更加安全、灵活和高效。

在实际项目中,我们需要根据项目需求和安全标准选择合适的技术和工具,确保数据库连接和操作的安全性和可靠性。同时,我们也要不断学习和探索新的技术,以跟上数据库领域的发展和变化。希望本文能够帮助读者更好地理解和应用Python数据库编程的相关知识,为实际项目开发提供帮助和指导。

在这里插入图片描述

这篇关于使用Python进行数据库连接与操作SQLite和MySQL【第144篇—SQLite和MySQL】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826666

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件