SegFormer 项目排坑记录

2024-03-18 23:20
文章标签 项目 记录 排坑 segformer

本文主要是介绍SegFormer 项目排坑记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SegFormer 项目排坑记录

  • 任务
  • 记录
    • 创建conda环境
  • 准备数据库和预训练参数
  • 程序配置修改
  • 测试
  • 可视化
  • 训练

任务

需要复现SegFormer分割项目,似乎还有点麻烦,参考这几个进行复现,记录下过程:
SegFormer
mmsegmentation
CSDN博客
知乎博客

记录

创建conda环境

SegFormer的readme说:

For install and data preparation, please refer to the guidelines in MMSegmentation v0.13.0.

看来要先按照mmsegmentation创建环境。
按照mmsegmentation的readme执行:

conda create -n SEGFORMER python=3.7 -y
conda activate SEGFORMER
pip3 install empy==3.3.4 rospkg pyyaml catkin_pkg

mmsegmentation要求装torch1.6.0,配套cuda10.1.这可不行,我3070显卡只能用11.0以上的cuda。查看pytorch官网,没有torch1.6.0配套11cuda的。但我发现知乎那个博客他用的是Pytorch 1.10.0,这个查一下就有cuda11了。CSDN那个用的torch1.7.0,配合cuda11。我决定用1.7.0的:

conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch -y
pip3 install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html

你要问我为啥选这个版本?因为官网的建议是这样的:mmcv。当并不是full版本,我觉得还是用full版本保险。CSDN上那个是full版本,但不是2.0的,而且那个命令我跑不通。然后我发现官网的whl可以找到:whl,于是我就修改了官网的指令。

有个报错,但小问题:

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torch 1.7.0 requires dataclasses, which is not installed.
torch 1.7.0 requires future, which is not installed.

执行:

pip3 install dataclasses future

最后我装上的是1.7.2的:

Successfully installed addict-2.4.0 importlib-metadata-6.7.0 mmcv-full-1.7.2 opencv-python-4.9.0.80 packaging-24.0 platformdirs-4.0.0 tomli-2.0.1 typing-extensions-4.7.1 yapf-0.40.2 zipp-3.15.0

然后MMSegmentation这边好像没有要安装的了。除了git之后进行

pip install -e .

我觉得SegFormer的仓库应该包含了MMSegmentation,所以我打算开始git:

git clone https://github.com/NVlabs/SegFormer.git
cd SegFormer/
pip3 install -e .

然后看SegFormer的readme要安装:

pip install torchvision==0.8.2
pip install timm==0.3.2
pip install mmcv-full==1.2.7
pip install opencv-python==4.5.1.48
cd SegFormer && pip install -e . --user

但好多我已经有了,检查下:

pip3 show torchvision timm mmcv-full opencv-python

结果:

WARNING: Package(s) not found: timm
Name: torchvision
Version: 0.8.0
Summary: image and video datasets and models for torch deep learning
Home-page: https://github.com/pytorch/vision
Author: PyTorch Core Team
Author-email: soumith@pytorch.org
License: BSD
Location: /home/lcy-magic/anaconda3/envs/SEGFORMER/lib/python3.7/site-packages
Requires: numpy, pillow, torch
Required-by: 
---
Name: mmcv-full
Version: 1.7.2
Summary: OpenMMLab Computer Vision Foundation
Home-page: https://github.com/open-mmlab/mmcv
Author: MMCV Contributors
Author-email: openmmlab@gmail.com
License: 
Location: /home/lcy-magic/anaconda3/envs/SEGFORMER/lib/python3.7/site-packages
Requires: addict, numpy, opencv-python, packaging, Pillow, pyyaml, yapf
Required-by: 
---
Name: opencv-python
Version: 4.9.0.80
Summary: Wrapper package for OpenCV python bindings.
Home-page: https://github.com/opencv/opencv-python
Author: 
Author-email: 
License: Apache 2.0
Location: /home/lcy-magic/anaconda3/envs/SEGFORMER/lib/python3.7/site-packages
Requires: numpy
Required-by: mmcv-full

也就是我只用安装timm就行了,其他版本不对先不管了:

pip3 install timm==0.3.2

好像项目里还有个requirements,也装了吧:

pip3 install -r requirements.txt

conda环境至此应该搞好了,要准备数据库了。

准备数据库和预训练参数

因为ADE20K的官网一直没给我发账号验证邮件,我就从这里下数据集了数据集
然后我在SegFormer根目录新建了data文件夹,把东西解压在那里了,结构为:
在这里插入图片描述
从readme给的ondrive上下载segformer.b5.640x640.ade.160k.pth预训练参数文件(本来都想下载的,但校园网这个速度太慢了,先只下一个吧),然后放到根目录下创建pretrained文件夹,放到这里。

最后在根目录下新建一个Checkpoints文件夹用来存放训练过程中的文件。

数据集和预训练参数的准备就到这里。

程序配置修改

  1. 我感觉我不用改ade.py,因为我就用的这个数据集。
  2. 修改mmseg/models/decode_heads/segformer_head.py;因为我单卡训练,所以把59行SyncBN 修改为 BN:
# norm_cfg=dict(type='SyncBN', requires_grad=True)
norm_cfg=dict(type='BN', requires_grad=True)
  1. 关于数据集的位置:configs/base/datasets/ade20k.py和local_configs/segformer/B5/segformer.b5.640x640.ade.160k.py中的data_root和data中的路径都和我的一致,我也不改了(B5应该是效果最好的,640还是1024我也不知道,先选个640吧),其他还有好几个要根据数据集修改的地方,因为我用的就是ADE20数据集,所以也都不修改,不赘述了。

测试

根目录下运行:

python tools/test.py local_configs/segformer/B5/segformer.b5.640x640.ade.160k.py pretrained/segformer.b5.640x640.ade.160k.pth

报错:

home/lcy-magic/anaconda3/envs/SEGFORMER/lib/python3.7/site-packages/mmcv/__init__.py:21: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove components related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details.'On January 1, 2023, MMCV will release v2.0.0, in which it will remove '
Traceback (most recent call last):File "tools/test.py", line 10, in <module>from mmseg.apis import multi_gpu_test, single_gpu_testFile "/home/lcy-magic/Segment_TEST/SegFormer/mmseg/__init__.py", line 27, in <module>f'MMCV=={mmcv.__version__} is used but incompatible. ' \
AssertionError: MMCV==1.7.2 is used but incompatible. Please install mmcv>=[1, 1, 4], <=[1, 3, 0].

按照参考博客的说法,我把mmseg/init.py中的最大版本改了:

# MMCV_MAX = '1.3.0'
MMCV_MAX = '1.8.0'

再次运行又报错:

ModuleNotFoundError: No module named 'IPython'

于是安装:

pip3 install ipython

再次运行(太长了,截一部分):
在这里插入图片描述
在这里插入图片描述

可视化

运行:

python demo/image_demo.py demo/demo.png local_configs/segformer/B5/segformer.b5.640x640.ade.160k.py pretrained/segformer.b5.640x640.ade.160k.pth --device cuda:0 --palette ade

效果有点拉胯哈哈:
在这里插入图片描述
可能因为是640的,正好我的b0下载好了,我试试b0:

python demo/image_demo.py demo/demo.png local_configs/segformer/B0/segformer.b0.512x512.ade.160k.py pretrained/segformer.b0.512x512.ade.160k.pth --device cuda:0 --palette ade

稍微好了点:
在这里插入图片描述

训练

把readme中的预训练权重文件下载到pretrained文件夹,我只下载了mit_b1.pth。
主目录下运行:

python tools/train.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py 

成功!但没完全成功:
在这里插入图片描述
在这里插入图片描述
按照参考博客的方法。
在我的conda路径下的文件/home/lcy-magic/anaconda3/envs/SEGFORMER/lib/python3.7/site-packages/mmcv/runner/hooks/logger/text.py中添加:

import time

再把整个时间打印部分修改为:

            if 'time' in log_dict.keys():self.time_sec_tot += (log_dict['time'] * self.interval)# time_sec_avg = self.time_sec_tot / (#     runner.iter - self.start_iter + 1)# eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1)# eta_str = str(datetime.timedelta(seconds=int(eta_sec)))# log_str += f'eta: {eta_str}, '# log_str += f'time: {log_dict["time"]:.3f}, ' \#            f'data_time: {log_dict["data_time"]:.3f}, 'log_dict["data_time"] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')log_str += f'time: {log_dict["time"]}, 'f'data_time: {log_dict["data_time"]}, '

搞定!

这篇关于SegFormer 项目排坑记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824004

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

IDEA运行spring项目时,控制台未出现的解决方案

《IDEA运行spring项目时,控制台未出现的解决方案》文章总结了在使用IDEA运行代码时,控制台未出现的问题和解决方案,问题可能是由于点击图标或重启IDEA后控制台仍未显示,解决方案提供了解决方法... 目录问题分析解决方案总结问题js使用IDEA,点击运行按钮,运行结束,但控制台未出现http://

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短