【人工智能】英文学习材料01(每日一句)

2024-03-18 05:20

本文主要是介绍【人工智能】英文学习材料01(每日一句),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

目录

1.Natural Language Processing,NLP(自然语言处理)

2.Machine Learing,ML(机器学习)

3.Neural Networks(神经网络)

4.Deep Learing(深度学习)

5.Loss Function (损失函数)

6.Gradient Descent (梯度下降)

7.Stochastic Gradient Descent, SGD (随机梯度下降)

8.Mini-batch Gradient Descent (小批量梯度下降)

9.Backpropagation (反向传播)

10.Overfitting (过拟合)


1.Natural Language Processing,NLP(自然语言处理)

Natural Language Processing (NLP) is the field of artificial intelligence that enables computers to understand, interpret, and generate human language. It bridges the gap between human communication and computer understanding, making it possible for machines to perform tasks like translation, sentiment analysis, and topic classification.

  • interpret--解释、理解
  • bridges the gap -- 桥接差距
  • perform tasks -- 执行任务
  • sentiment analysis -- 情感分析
  • topic classification -- 主题分类

2.Machine Learing,ML(机器学习)

This is a subset of artificial intelligence that involves algorithms and statistical models that enable computers to perform specific tasks without using explicit instructions. Instead, they rely on patterns and inference derived from data. The goal of ML is to enable computers to learn from and make predictions or decisions based on data.

  • subet -- 子集
  • algorithms -- 算法
  • statistical models -- 统计模型
  • specific tasks -- 特定任务
  • explicit instructions -- 明确的指令
  • patterns -- 模式
  • inference -- 推理
  • derived from -- 源自

3.Neural Networks(神经网络)

Inspired by the human brain, neural networks are a set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns. They interpret sensory data through a kind of machine perception, labeling, or clustering of raw input. These networks can adapt to changing input, meaning they generate the best possible result without needing to redesign the output criteria.

  • Inspired by -- 受启发于 
  • modeled loosely after -- 大致模仿,model有模仿的意思,loosely有偏差的
  • recognize patterns -- 识别模式
  • sensory data -- 感官数据
  • perception -- 感知、感觉
  • clustering -- 聚类
  • raw input -- 原始输入
  • adapt to -- 适应
  • changing -- chage的现在分词
  • redesign -- 重新设计
  • criteria -- 标准

4.Deep Learing(深度学习)

Deep Learning is a subset of machine learning in artificial intelligence that structures algorithms in layers to create an "artificial neural network" that can learn and make intelligent decisions on its own. This technology powers advanced applications such as voice recognition and image analysis.

  • subset -- 子集
  • structures -- 组织
  • layers -- 层
  • powers advanced applications -- 驱动高级应用
  • voice recognition -- 语音识别
  • image analysis -- 图像分析

5.Loss Function (损失函数)

A Loss Function in machine learning measures the difference between the actual output and the predicted output of the model. It quantifies how well the prediction model performs by assigning a cost to prediction errors.

  • actual output -- 实际输出
  • predicted output -- 预测输出
  • quantifies -- 量化
  • assigning -- 分配

6.Gradient Descent (梯度下降)

Gradient Descent is an optimization algorithm used to minimize some function by iteratively moving towards the minimum value of the function. It is commonly used in machine learning to find the best parameters for a model.

  • gradient -- 梯度
  • optimization algorithm -- 优化算法
  • minimize -- 最小化
  • iteratively -- 迭代地
  • minimum value -- 最小值
  • commonly -- 普遍地
  • parameters -- 参数

7.Stochastic Gradient Descent, SGD (随机梯度下降)

Stochastic Gradient Descent (SGD) is a variation of the gradient descent algorithm that updates the model's parameters using only a single sample or a small batch of samples, which makes the process faster and can help avoid local minima.

  • stochastic -- 随机的
  • variation -- 变体
  • batch -- 批量
  • local minima -- 局部最小值

8.Mini-batch Gradient Descent (小批量梯度下降)

Mini-batch Gradient Descent is a balance between the full batch gradient descent and stochastic gradient descent. It updates the model's parameters using a subset of the training data, rather than the full dataset or individual samples, optimizing computational efficiency.

  • full batch -- 全批量
  • subset -- 子集
  • training data -- 训练数据
  • computational efficiency -- 计算效率

9.Backpropagation (反向传播)

Backpropagation is a method used in artificial neural networks to calculate the gradient of the loss function with respect to each weight by the chain rule, effectively allowing for the optimization of weights to minimize loss.

  • calculate -- 计算
  • respect -- 关于
  • chain rule -- 链规则

10.Overfitting (过拟合)

Overfitting occurs when a machine learning model learns the detail and noise in the training data to the extent that it negatively impacts the model's performance on new data. This means the model is too complex, capturing noise as if it were a significant pattern, leading to poor generalization on unseen data.

  • occurs -- 出现
  • detail and noise -- 细节和噪声
  • to the extent that -- 到...的程度
  • negatively impacts -- 负面影响
  • performance -- 性能
  • capturing noise -- 捕捉噪声
  • significant pattern -- 重要模式
  • poor generalization -- 泛化能力差
  • unseen data -- 未见数据

以上

君子坐而论道,少年起而行之,共勉

这篇关于【人工智能】英文学习材料01(每日一句)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821299

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

集中式版本控制与分布式版本控制——Git 学习笔记01

什么是版本控制 如果你用 Microsoft Word 写过东西,那你八成会有这样的经历: 想删除一段文字,又怕将来这段文字有用,怎么办呢?有一个办法,先把当前文件“另存为”一个文件,然后继续改,改到某个程度,再“另存为”一个文件。就这样改着、存着……最后你的 Word 文档变成了这样: 过了几天,你想找回被删除的文字,但是已经记不清保存在哪个文件了,只能挨个去找。真麻烦,眼睛都花了。看

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

每日一练7:简写单词(含链接)

1.链接 简写单词_牛客题霸_牛客网 2.题目 3.代码1(错误经验) #include <iostream>#include <string>using namespace std;int main() {string s;string ret;int count = 0;while(cin >> s)for(auto a : s){if(count == 0){if( a <=

【每日刷题】Day113

【每日刷题】Day113 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 91. 解码方法 - 力扣(LeetCode) 2. LCR 098. 不同路径 - 力扣(LeetCode) 3. 63. 不同路径 II - 力扣(LeetCode) 1. 91. 解码方法 - 力扣(LeetCode) //思路:动态规划。 cl

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

01 Docker概念和部署

目录 1.1 Docker 概述 1.1.1 Docker 的优势 1.1.2 镜像 1.1.3 容器 1.1.4 仓库 1.2 安装 Docker 1.2.1 配置和安装依赖环境 1.3镜像操作 1.3.1 搜索镜像 1.3.2 获取镜像 1.3.3 查看镜像 1.3.4 给镜像重命名 1.3.5 存储,载入镜像和删除镜像 1.4 Doecker容器操作 1.4