Linux第80步_使用“信号量”实现“互斥访问”共享资源

2024-03-17 17:12

本文主要是介绍Linux第80步_使用“信号量”实现“互斥访问”共享资源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、创建MySemaphoreLED目录

输入“cd /home/zgq/linux/Linux_Drivers/回车

切换到“/home/zgq/linux/Linux_Drivers/”目录

输入“mkdir MySemaphoreLED回车”,创建“MySemaphoreLED”目录

输入“ls回车”查看“/home/zgq/linux/Linux_Drivers/”目录下的文件和文件夹

2、添加gpio_led节点

若在stm32mp157d-atk.dts文件中的根节点下没有gpio_led节点,则添加gpio_led节点

3、编译设备树

1)、在VSCode终端,输入“make dtbs回车”,执行编译设备树

2)、输入“ls arch/arm/boot/uImage -l

查看是否生成了新的“uImage”文件

3)、输入“ls arch/arm/boot/dts/stm32mp157d-atk.dtb -l

查看是否生成了新的“stm32mp157d-atk.dtb”文件

拷贝输出的文件:

4)、输入“cp arch/arm/boot/uImage /home/zgq/linux/atk-mp1/linux/bootfs/ -f回车”,执行文件拷贝,准备烧录到EMMC;

5)、输入“cp arch/arm/boot/dts/stm32mp157d-atk.dtb /home/zgq/linux/atk-mp1/linux/bootfs/ -f回车”,执行文件拷贝,准备烧录到EMMC

6)、输入“cp arch/arm/boot/uImage /home/zgq/linux/tftpboot/ -f回车”,执行文件拷贝,准备从tftp下载;

7)、输入“cp arch/arm/boot/dts/stm32mp157d-atk.dtb /home/zgq/linux/tftpboot/ -f回车”,执行文件拷贝,准备从tftp下载;

8)、输入“ls -l /home/zgq/linux/atk-mp1/linux/bootfs/回车”,查看“/home/zgq/linux/atk-mp1/linux/bootfs/”目录下的所有文件和文件夹

9)、输入“ls -l /home/zgq/linux/tftpboot/回车”,查看“/home/zgq/linux/tftpboot/”目录下的所有文件和文件夹

输入“chmod 777 /home/zgq/linux/tftpboot/stm32mp157d-atk.dtb回车

给“stm32mp157d-atk.dtb”文件赋予可执行权限

输入“chmod 777 /home/zgq/linux/tftpboot/uImage回车 ,给“uImage”文件赋予可执行权限

输入“ls /home/zgq/linux/tftpboot/回车”,查看“/home/zgq/linux/tftpboot/”目录下的所有文件和文件夹

4、创建LED.c

#include "LED.h"

#include <linux/gpio.h>

//使能gpio_request(),gpio_free(),gpio_direction_input(),

//使能gpio_direction_output(),gpio_get_value(),gpio_set_value()

#include <linux/of_gpio.h>

//使能of_gpio_named_count(),of_gpio_count(),of_get_named_gpio()

struct MySemaphoreLED_dev  strMySemaphoreLED;

int Get_gpio_num(void);

int led_GPIO_request(void);

void led_switch(u8 sta,struct MySemaphoreLED_dev *dev);

int Get_gpio_num(void)

{

  int ret = 0;

  const char *str;

  /* 设置LED所使用的GPIO */

  /* 1、获取设备节点:strMySemaphoreLED */

  strMySemaphoreLED.nd = of_find_node_by_path("/gpio_led");

  //path="/gpio_led,使用“全路径的节点名“在“stm32mp157d-atk.dts“中查找节点“gpio_led”

  //返回值:返回找到的节点,如果为NULL,表示查找失败。

  if(strMySemaphoreLED.nd == NULL) {

    printk("gpio_led node not find!\r\n");

    return -EINVAL;

  }

  /* 2.读取status属性 */

  ret = of_property_read_string(strMySemaphoreLED.nd, "status", &str);

  //在gpio_led节点中,status = "okay";

  //指定的设备节点strMySemaphoreLED.nd

  //proname="status",给定要读取的属性名字

  //out_string=str:返回读取到的属性值

  //返回值:0,读取成功,负值,读取失败。

  if(ret < 0) return -EINVAL;

  if (strcmp(str, "okay")) return -EINVAL;

  //strcmp(s1,s2),当s1<s2时,返回值为负数

  //strcmp(s1,s2),当s1>2时,返回值为正数

  //strcmp(s1,s2),当s1=s2时,返回值为0

  /* 3、获取compatible属性值并进行匹配 */

  ret = of_property_read_string(strMySemaphoreLED.nd, "compatible", &str);

  //在gpio_led节点中,compatible = "zgq,led";

  //指定的设备节点strMySemaphoreLED.nd

  //proname="compatible",给定要读取的属性名字

  //out_string=str:返回读取到的属性值

  //返回值:0,读取成功,负值,读取失败。

  if(ret < 0) {

    printk("gpio_led node: Failed to get compatible property\n");

    return -EINVAL;

  }

  if (strcmp(str, "zgq,led")) {

    printk("gpio_led node: Compatible match failed\n");

    return -EINVAL;

  }

  /* 4、 根据设备树中的"led-gpio"属性,得到LED所使用的LED编号 */

  strMySemaphoreLED.led_gpio = of_get_named_gpio(strMySemaphoreLED.nd, "led-gpio", 0);

  //在gpio_led节点中,led-gpio = <&gpioi 0 GPIO_ACTIVE_LOW>

  //np=strMySemaphoreLED.nd,指定的“设备节点”

  //propname="led-gpio",给定要读取的属性名字

  //Index=0,给定的GPIO索引为0

  //返回值:正值,获取到的GPIO编号;负值,失败。

  if(strMySemaphoreLED.led_gpio < 0) {

    printk("can't get led-gpio");

    return -EINVAL;

  }

  printk("led-gpio num = %d\r\n", strMySemaphoreLED.led_gpio);

  //打印结果为:“led-gpio num = 128“

  //因为GPIO编号是从0开始的,GPIOI端口的序号是8,每个端口有16个IO口,因此GPIOI0的编号为8*16=128

  return 0;

}

int led_GPIO_request(void)

{

  int ret = 0;

  /* 5.向gpio子系统申请使用“gpio编号” */

  ret = gpio_request(strMySemaphoreLED.led_gpio, "LED-GPIO");

  //gpio=strMySemaphoreLED.led_gpio,指定要申请的“gpio编号”

  //Iabel="LED-GPIO",给这个gpio引脚设置个名字为"LED-GPIO"

  //返回值:0,申请“gpio编号”成功;其他值,申请“gpio编号”失败;

  if (ret) {

    printk(KERN_ERR "strMySemaphoreLED: Failed to request led-gpio\n");

    return ret;

  }

  /* 6、设置PI0为输出,并且输出高电平,默认关闭LED灯 */

  ret = gpio_direction_output(strMySemaphoreLED.led_gpio, 1);

  //gpio=strMySemaphoreLED.led_gpio,指定的“gpio编号”,这里是128,对应的是GI0引脚

  //value=1,设置引脚输出高电平

  //返回值:0,设置“引脚输出为vakued的值”成功;负值,设置“引脚输出为vakued的值”失败。

  if(ret < 0) {

    printk("can't set gpio!\r\n");

  }

  return 0;

}

void led_switch(u8 sta,struct MySemaphoreLED_dev *dev)

{

if(sta == LEDON) {

    gpio_set_value(dev->led_gpio, 0); /* 打开LED灯 */

}

else if(sta == LEDOFF) {

    gpio_set_value(dev->led_gpio, 1); /* 关闭LED灯 */

}

}

5、创建LED.h

#ifndef __LED_H

#define __LED_H

#include <linux/types.h>

/*

数据类型重命名

使能bool,u8,u16,u32,u64, uint8_t, uint16_t, uint32_t, uint64_t

使能s8,s16,s32,s64,int8_t,int16_t,int32_t,int64_t

*/

#include <linux/cdev.h> //使能cdev结构

#include <linux/cdev.h> //使能class结构和device结构

#include <linux/of.h>   //使能device_node结构

#include <linux/semaphore.h>//使能信号量结构体semaphore

#define LEDOFF 0 /* 关灯 */

#define LEDON 1 /* 开灯 */

struct MySemaphoreLED_dev{

  dev_t devid; /*声明32位变量devid用来给保存设备号*/

  int major;   /*主设备号*/

  int minor;   /*次设备号*/

  struct cdev  cdev; /*字符设备结构变量cdev */

  struct class *class;     /*类*/

  struct device *device;  /*设备*/

  struct device_node *nd; /*设备节点*/

  int led_gpio;   /*led所使用的GPIO编号*/

  struct semaphore sem; /* 定义信号量 */

};

extern struct MySemaphoreLED_dev strMySemaphoreLED;

extern int Get_gpio_num(void);

extern int led_GPIO_request(void);

extern void led_switch(u8 sta,struct MySemaphoreLED_dev *dev);

#endif

6、创建LEDInterface.c

#include "LED.h"

#include <linux/types.h>

//数据类型重命名

//使能bool,u8,u16,u32,u64, uint8_t, uint16_t, uint32_t, uint64_t

//使能s8,s16,s32,s64,int8_t,int16_t,int32_t,int64_t

#include <linux/ide.h>

//使能copy_from_user(),copy_to_user()

#include <linux/module.h>

//使能MySemaphoreLED_init(),MySemaphoreLED_exit()

#include <linux/gpio.h>

//使能gpio_request(),gpio_free(),gpio_direction_input(),

//gpio_direction_output(),gpio_get_value(),gpio_set_value()

#include <linux/semaphore.h>

//使能DEFINE_SEMAPHORE(),sema_init())

//使能down(),down_trylock(),down_interruptible(),up(),down_killable()

#define MySemaphoreLED_CNT    1   //定义设备数量为1

#define MySemaphoreLED_NAME  "MySemaphoreLEDName"  //定义设备的名字

#define MY_TEST 1

/* 打开设备 */

static int MySemaphoreLED_open(struct inode *inode, struct file *filp)

{

  filp->private_data = &strMySemaphoreLED; /*设置私有数据*/

  /* 获取信号量,读取“strMySemaphoreLED.sem.count“的值 */

#if MY_TEST ==0

  if ( down_interruptible(&strMySemaphoreLED.sem) )

  {/* 获取信号量,strMySemaphoreLED.sem.count=0,进入休眠状态的线程可以被信号打断*/

    return -ERESTARTSYS;

  }

#elif MY_TEST==1

  down(&strMySemaphoreLED.sem);

/*

如果sem.count>0,则sem.count--,当前进程获取信号量

如果sem.count<=0,表明当前进程无法获取信号量,则加入“等待队列”,开始睡眠;

down()不能用于中断函数里;

*/

#endif

  printk("MySemaphoreLED_open!\r\n");

  return 0;

}

/* 从设备读取数据,保存到首地址为buf的数据块中,长度为cnt个字节 */

//file结构指针变量flip表示要打开的设备文件

//buf表示用户数据块的首地址

//cnt表示用户数据的长度,单位为字节

//loff_t结构指针变量offt表示“相对于文件首地址的偏移”

static ssize_t MySemaphoreLED_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)

{

  return 0;

}

/* 向设备写数据,将数据块首地址为buf的数据,长度为cnt个字节,发送给用户 */

//file结构指针变量flip表示要打开的设备文件

//buf表示用户数据块的首地址

//cnt表示用户数据的长度,单位为字节

//loff_t结构指针变量offt表示“相对于文件首地址的偏移”

static ssize_t MySemaphoreLED_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)

{

  int ret = 0;

  unsigned char databuf[1];

  unsigned char ledstat;

  ret = copy_from_user(databuf, buf, cnt);

//将buf[]中的前cnt个字节拷贝到databuf[]中

  if(ret <0){

    printk("kernel write failed!\r\n");

    ret = -EFAULT;

  }

  ledstat = databuf[0];/*获取到应用传递进来的开关灯状态*/

  led_switch(ledstat,filp->private_data);/*执行开灯或执行关灯*/

  return ret;

}

/* 关闭/释放设备 */

static int MySemaphoreLED_release(struct inode *inode, struct file *filp)

{

  struct MySemaphoreLED_dev *dev = filp->private_data;

  up(&dev->sem);

/*

释放信号量

如果“等待队列”中没有其他进程在等待sem信号量,则将sem.count++,“释放信号量”;

如果“等待队列”中有其他进程在等待sem信号量,则先进入“等待队列”中的进程会优先“获取信号量”。

*/

  return 0;

}

/*声明file_operations结构变量MyCharDevice_fops*/

/*它是指向设备的操作函数集合变量*/

const struct file_operations MySemaphoreLED_fops = {

  .owner = THIS_MODULE,

  .open = MySemaphoreLED_open,

  .read = MySemaphoreLED_read,

  .write = MySemaphoreLED_write,

  .release = MySemaphoreLED_release,

};

/*驱动入口函数 */

static int  __init MySemaphoreLED_init(void)

{

  int ret;

  sema_init(&strMySemaphoreLED.sem, 1);

/*

将“信号量值”设置为1,那么这个信号量就是“二值信号量”,它具有互斥访问共享资源的作用

sem.count=1,sem为“二值信号量”。

*/

  ret=Get_gpio_num();//读引脚编号

  if(ret < 0) return ret;

/* 1、申请“gpio编号”*/

  ret=led_GPIO_request();//申请“gpio编号” 

  if(ret < 0) return ret;//向gpio子系统申请使用“gpio编号” 失败

  /*2、申请设备号*/

  strMySemaphoreLED.major=0;

  if(strMySemaphoreLED.major)/*如果指定了主设备号*/

  {

    strMySemaphoreLED.devid = MKDEV(strMySemaphoreLED.major, 0);

    //输入参数strMySemaphoreLED.major为“主设备号”

    //输入参数0为“次设备号”,大部分驱动次设备号都选择0

    //将strMySemaphoreLED.major左移20位,再与0相或,就得到“Linux设备号”

ret=register_chrdev_region( strMySemaphoreLED.devid,\

                       MySemaphoreLED_CNT, \

                       MySemaphoreLED_NAME );

    //strMySemaphoreLED.devid表示起始设备号

    //MySemaphoreLED_CNT表示次设备号的数量

    //MySemaphoreLED_NAME表示设备名

    if(ret < 0)

      goto free_gpio;

  }

  else

  { /* 没有定义设备号 */

ret=alloc_chrdev_region( &strMySemaphoreLED.devid,\

                     0, \

                     MySemaphoreLED_CNT,\

                     MySemaphoreLED_NAME);

    /* 申请设备号 */

    //strMySemaphoreLED.devid:保存申请到的设备号

    //0:次设备号的起始地址

    //MySemaphoreLED_CNT:要申请的次设备号数量;

    //MySemaphoreLED_NAME:表示“设备名字”

    if(ret < 0)

      goto free_gpio;

    strMySemaphoreLED.major = MAJOR(strMySemaphoreLED.devid);

    /* 获取分配号的主设备号 */

    //输入参数strMySemaphoreLED.devid为“Linux设备号”

    //将strMySemaphoreLED.devid右移20位得到“主设备号”

    strMySemaphoreLED.minor = MINOR(strMySemaphoreLED.devid);

    /* 获取分配号的次设备号 */

    //输入参数strMySemaphoreLED.devid为“Linux设备号”

    //将strMySemaphoreLED.devid与0xFFFFF相与后得到“次设备号”

  }

  /*3、注册字符设备*/

  strMySemaphoreLED.cdev.owner = THIS_MODULE;

  //使用THIS_MODULE将owner指针指向当前这个模块

  cdev_init(&strMySemaphoreLED.cdev,&MySemaphoreLED_fops);

  //注册字符设备,初始化“字符设备结构变量strMySemaphoreLED.cdev”

  //strMySemaphoreLED.cdev是等待初始化的结构体变量

  //MySemaphoreLED_fops就是字符设备文件操作函数集合

  /*4、添加字符设备*/

  ret=cdev_add(&strMySemaphoreLED.cdev,strMySemaphoreLED.devid,MySemaphoreLED_CNT);

  //添加字符设备

  /*&strMySemaphoreLED.cdev表示指向要添加的字符设备,即字符设备结构strMySemaphoreLED.cdev变量*/

  //strMySemaphoreLED.devid表示设备号

  //MySemaphoreLED_CNT表示需要添加的设备数量

  if(ret < 0 ) //添加字符设备失败

    goto del_register;

  printk("dev id major = %d,minor = %d\r\n", strMySemaphoreLED.major, strMySemaphoreLED.minor);

  printk("MySemaphoreLED_init is ok!!!\r\n");

  /*5、自动创建设备节点 */

  strMySemaphoreLED.class =class_create(THIS_MODULE, MySemaphoreLED_NAME);

  if (IS_ERR(strMySemaphoreLED.class)){

    goto del_cdev;

  }

  /*6、创建设备 */

  strMySemaphoreLED.device = device_create(strMySemaphoreLED.class, NULL, strMySemaphoreLED.devid, NULL, MySemaphoreLED_NAME);

  //创建设备

  //设备要创建在strMySemaphoreLED.class类下面

  //NULL表示没有父设备

  //strMySemaphoreLED.devid是设备号;

  //参数drvdata=NULL,设备没有使用数据

  //MySemaphoreLED_NAME是设备名字

  //如果设置fmt=MySemaphoreLED_NAME 的话,就会生成/dev/MySemaphoreLED_NAME设备文件。

  //返回值就是创建好的设备。

  if (IS_ERR(strMySemaphoreLED.device)){

    goto destroy_class;

  }

  return 0;

destroy_class:

  class_destroy(strMySemaphoreLED.class);

  //删除类

  //strMySemaphoreLED.class就是要删除的类

del_cdev:

   cdev_del(&strMySemaphoreLED.cdev);

   //删除字符设备

   //&strMySemaphoreLED.cdev表示指向需要删除的字符设备,即字符设备结构strMySemaphoreLED.cdev变量

del_register:

  unregister_chrdev_region(strMySemaphoreLED.devid, MySemaphoreLED_CNT);

  /* 释放设备号 */

  //strMySemaphoreLED.devid:需要释放的起始设备号

  //MySemaphoreLED_CNT:需要释放的次设备号数量;

free_gpio://申请设备号失败

  /*释放gpio编号*/

  gpio_free(strMySemaphoreLED.led_gpio);

  return -EIO;

}

/*驱动出口函数 */

static void __exit MySemaphoreLED_exit(void)

{

  /*1、删除字符设备*/

  cdev_del(&strMySemaphoreLED.cdev);

  /*删除字符设备*/

  /*&strMySemaphoreLED.cdev表示指向需要删除的字符设备,即字符设备结构&strMySemaphoreLED.cdev变量*/

  /*2、 释放设备号 */

  unregister_chrdev_region(strMySemaphoreLED.devid, MySemaphoreLED_CNT);

  /*释放设备号 */

  //strMySemaphoreLED.devid:需要释放的起始设备号

  //MySemaphoreLED_CNT:需要释放的次设备号数;

  /*3、 删除设备 */

  device_destroy(strMySemaphoreLED.class, strMySemaphoreLED.devid);

  //删除创建的设备

  //strMySemaphoreLED.class是要删除的设备所处的类

  //strMySemaphoreLED.devid是要删除的设备号

  

  /*4、删除类*/

  class_destroy(strMySemaphoreLED.class);

  //删除类

  //strMySemaphoreLED.class就是要删除的类

  /*5、释放gpio编号*/

  gpio_free(strMySemaphoreLED.led_gpio);

}

module_init(MySemaphoreLED_init);

//指定MySemaphoreLED_init()为驱动入口函数

module_exit(MySemaphoreLED_exit);

//指定MySemaphoreLED_exit()为驱动出口函数

MODULE_AUTHOR("Zhanggong");//添加作者名字

MODULE_LICENSE("GPL");//LICENSE采用“GPL协议”

MODULE_INFO(intree,"Y");

//去除显示“loading out-of-tree module taints kernel.”

7、LED_APP.c如下:

//添加延时程序,导致关闭文件推迟,为了是演示互斥访问共享资源的效果

#include "stdio.h"

#include "unistd.h"

#include "sys/types.h"

#include "sys/stat.h"

#include "fcntl.h"

#include "stdlib.h"

#include "string.h"

//APP运行命令:./LED_APP filename <1>|<0>如果是1表示打开LED,如果是0表示关闭LED

#define LEDOFF 0 /* 关灯 */

#define LEDON 1 /* 开灯 */

/*

参数argc: argv[]数组元素个数

参数argv[]:是一个指针数组

返回值: 0 成功;其他 失败

*/

int main(int argc, char *argv[])

{

  int fd, retvalue;

  char *filename;

  unsigned char databuf[1];

  unsigned char cnt = 0;

  if(argc != 3)

  {

    printf("Error Usage!\r\n");

    return -1;

  }

  //argv[]是指向输入参数“./LED_App” “/dev/LED” “1”

  filename = argv[1];

  //argv[1]指向字符串“/dev/LED”

  fd = open(filename, O_RDWR);

  //如果打开“/dev/LED”文件成功,则fd为“文件描述符”

  //fd=0表示标准输入流; fd=1表示标准输出流;fd=2表示错误输出流;

  if(fd < 0)

  {

    printf("Can't open file %s\r\n", filename);

    return -1;

  }

  databuf[0]= atoi(argv[2]); /* 写入的数据,是数字的,表示打开或关闭 */

  retvalue = write(fd, databuf, 1);

  //将databuf[]中前1个字节发送给用户

  //返回值大于0表示写入的字节数;

  //返回值等于0表示没有写入任何数据;

  //返回值小于0表示写入失败

  if(retvalue < 0)

  {

    printf("write file %s failed!\r\n", filename);

    close(fd);

    //fd表示要关闭的“文件描述符”

    //返回值等于0表示关闭成功

//返回值小于0表示关闭失败

printf("close file %s\r\n", filename);

    return -1;

  }

  /* 模拟占用10S LED */

//添加延时程序,导致关闭文件推迟,为了是演示互斥访问共享资源的效果

  while(1) {

    sleep(5);

    cnt++;

    printf("App running times:%d\r\n", cnt);

    if(cnt >= 2) break;

  }

  /* 关闭设备 */

  retvalue = close(fd);

  //fd表示要关闭的“文件描述符”

  //返回值等于0表示关闭成功

  //返回值小于0表示关闭失败

  if(retvalue < 0)

  {

    printf("Can't close file %s\r\n", filename);

    return -1;

  }

else printf("close file %s\r\n", filename);

  return 0;

}

8、创建Makefile

KERNELDIR := /home/zgq/linux/atk-mp1/linux/my_linux/linux-5.4.31

#使用“:=”将其后面的字符串赋值给KERNELDIR

CURRENT_PATH := $(shell pwd)

#采用“shell pwd”获取当前打开的路径

#使用“$(变量名)”引用“变量的值

MyAPP := LED_APP

MySemaphoreLED_Module-objs = LEDInterface.o LED.o

obj-m := MySemaphoreLED_Module.o

CC := arm-none-linux-gnueabihf-gcc

drv:

$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules

app:

$(CC)  $(MyAPP).c  -o $(MyAPP)

clean:

$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

rm $(MyAPP)

install:

sudo cp *.ko $(MyAPP) /home/zgq/linux/nfs/rootfs/lib/modules/5.4.31/ -f

9、添加“c_cpp_properties.json

按下“Ctrl+Shift+P”,打开VSCode控制台,然后输入“C/C++:Edit Configurations(JSON)”,打开以后会自动在“.vscode ”目录下生成一个名为“c_cpp_properties.json” 的文件。

修改c_cpp_properties.json内容如下所示:

{

    "configurations": [

        {

            "name": "Linux",

            "includePath": [

                "${workspaceFolder}/**",

                "/home/zgq/linux/atk-mp1/linux/my_linux/linux-5.4.31",

                "/home/zgq/linux/Linux_Drivers/MySemaphoreLED",

                "/home/zgq/linux/atk-mp1/linux/my_linux/linux-5.4.31/arch/arm/include",

                "/home/zgq/linux/atk-mp1/linux/my_linux/linux-5.4.31/include",

                "/home/zgq/linux/atk-mp1/linux/my_linux/linux-5.4.31/arch/arm/include/generated"

            ],

            "defines": [],

            "compilerPath": "/usr/bin/gcc",

            "cStandard": "gnu11",

            "cppStandard": "gnu++14",

            "intelliSenseMode": "gcc-x64"

        }

    ],

    "version": 4

}

10、编译

输入“make clean回车

输入“make drv回车

输入“make app回车

输入“make install回车

输入“ls /home/zgq/linux/nfs/rootfs/lib/modules/5.4.31/ -l回车”产看是存在“LED_APP和MySemaphoreLED_Module.ko

11、测试

启动开发板,从网络下载程序

输入“root

输入“cd /lib/modules/5.4.31/回车

切换到“/lib/modules/5.4.31/”目录

注意:“lib/modules/5.4.31/在虚拟机中是位于“/home/zgq/linux/nfs/rootfs/”目录下,但在开发板中,却是位于根目录中

输入“ls -l”查看“MySemaphoreLED_Module.ko和LED_APP”是否存在

输入“depmod”,驱动在第一次执行时,需要运行“depmod”

输入“modprobe MySemaphoreLED_Module.ko”,加载“MySemaphoreLED_Module.ko”模块

输入“lsmod”查看有哪些驱动在工作

输入“ls /dev/MySemaphoreLEDName -l回车”,发现节点文件“/dev/MySemaphoreLEDName

输入“./LED_APP /dev/MySemaphoreLEDName 1&回车”执行开灯

注意:“ &”表示在后台运行LED_APP这个软件

输入“./LED_APP /dev/MySemaphoreLEDName 0回车”执行关灯

输入“rmmod MySemaphoreLED_Module.ko”,卸载“MySemaphoreLED_Module.ko”模块

注意:输入“rmmod MySemaphoreLED_Module”也可以卸载“MySemaphoreLED_Module.ko”模块

输入“lsmod”查看有哪些驱动在工作。

输入“ls /dev/MySemaphoreLEDName -l回车”,查询节点文件“/dev/MySemaphoreLEDName”是否存在

这篇关于Linux第80步_使用“信号量”实现“互斥访问”共享资源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819600

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2