编程之美-金刚坐飞机问题

2024-03-17 14:58

本文主要是介绍编程之美-金刚坐飞机问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章背景


编程之美 4.1 “金刚坐飞机问题”的问题2,难度比问题1大很多。

编程之美的官方解法,包括原理分析、概率公式、推导过程等,感觉阐述不够详细,没有完全读懂。

搜索一下 “金刚坐飞机”,参考了几个很不错的分析,得到一个自己觉得比较完整的答案。

 

仔细审题

 

首先,仔细审题,有两个细节需要搞清楚:

 

  1. 飞机上总共有多少座位?N?N+1?还是更多?从问题1的官方解答看,飞机上座位总数为N。
  2. “...乘客们正准备按机票编号(1,2,3...N)依次排队登机。突然来了一只大猩猩(对,他叫金刚)。他也有飞机票,但是...”,金刚的机票编号是否属于闭区间[1,N]?换句话说,所有乘客(包括金刚)的总数是N还是N+1?既然座位总数为N,金刚也有飞机票,飞机也不可能超载,因此,所有乘客(包括金刚)的总数为N。金刚的机票编号也属于闭区间[1,N]。

 

 

推敲官方答案

 

然后,看一下编程之美的官方答案:第i个乘客坐在自己位置上的概率为 
 。
既然飞机座位总数为N,根据官方答案,第1个乘客的概率为。实际上,第1个乘客的概率应该为。计算过程如下:
根据全概率公式,第1个乘客坐在自己座位上的概率:


 
如何解释这个问题呢?从问题2的官方解答过程“如果n=1或n>i,那么第i个乘客坐在自己位置上的概率为1....”可以推测,官方认为金刚的机票编号为1。官方答案中的i应该不包括1。

 

重新描述问题

 

到这里,我重新描述一下问题:
飞机上有N个座位,座位编号依次为1,2,..N。恰好有N个乘客排队登机,第1个乘客的座位编号是1,第2个乘客的座位编号是2,...,第N个乘客的座位编号是N。每个乘客都应该坐在编号正确的座位上。但是,第1个乘客是不讲道理的金刚,他第一个进入飞机,随便(随机)挑了一个座位坐下。其他乘客敢怒不敢言,只好依次找座位坐下。如果自己的座位没有被占,则坐自己的作为,否则,也像金刚那样随便挑一个座位。现在,求第i个乘客(第1个乘客还是金刚)坐到自己座位的概率是多少?
我算出的答案为:


 
与官方答案是一致的,但是本文会给出更加详细的计算过程。

 

概率计算过程

 

下面描述计算过程。

令P(i)表示,第i个乘客坐到座位i的概率。

金刚的座位明明是空的,他还要随便占位;其他乘客只有在自己座位被占的情况下,才随便坐。因此,金刚与其他乘客的行为并不相同,需要分开计算。

 

先计算金刚的概率

 

显然,P(1)就是金刚坐在1号座位的概率。金刚是第一个随便挑座位的,因此概率为
 

 

再计算其他乘客的概率

核心工具是全概率公式

 

第2~N个乘客的概率不容易看出,我们根据全概率公式来计算,条件为金刚坐在编号为j的座位上:
,其中:

  • P(K=j)表示,金刚坐在座位j的概率
  • P(i|K=j)表示,在金刚坐在座位j上的情况下,第i个乘客坐在座位i的概率

显然,金刚坐在位置j的概率均等,都是

条件概率P(i|K=j)的计算不太直观,我们先简单分析一下:

  1. 如果j=1,也就是说金刚居然坐在了自己的座位上,第i个乘客(其实是所有其他乘客)必然能够坐到自己座位,因此P(K=j) = 1。
  2. 如果j=i,也就是说金刚居然坐在了第i个乘客的座位上,第i个乘客肯定不能坐到自己座位,因此P(K=j) = 0。
  3. 如果j>i,也就是说,金刚坐了(第i个乘客)后面的座位,不影响前面乘客找座位,第i个乘客(其实是第2~j-1个乘客)必然能够坐到自己座位,因此P(K=j) = 1。
  4. 如果1<j<i,也就是说,金刚抢了(第i个乘客)前面的座位,肯定会影响第i个乘客(其实是第j~N个乘客)的座位。

因此,可以初步计算:


这时,只需要计算最后一个条件概率

 

难点是计算条件概率

可以依次计算P(i|K=i-1),P(i|K=i-2),...,P(i|K=2),发现他们的值都为,神奇吧!

最终结果:


 

自顶向下计算条件概率

 

那么,1<j<i时,P(i|K=j)到底是怎么计算的呢?下面详细推导一下j=i-1和j=i-2这两种情况,其他情况可以顺推。

如果金刚坐在了座位i-1上,第i-1个乘客可以选择座位1、i、i+1~N。每种选择的概率均等,为1/(N-i+2):

 

  1. 如果第i-1个乘客选择座位1,则第i个乘客必然能坐到自己座位,概率为1
  2. 如果第i-1个乘客选择座位i,则第i个乘客必然不能坐到自己座位,概率为0
  3. 如果第i-1个乘客选择座位i+1~N,则第i个座位必然能坐到自己座位,概率为1

根据全概率公式,有

如果金刚坐在了座位i-2上,第i-2个乘客可以选择座位1、i-1、i~N。每种选择的概率均等,为1/(N-i+3):

 

  1. 如果第i-2个乘客选择座位1,则第i个乘客必然能坐到自己座位,概率为1
  2. 如果第i-2个乘客选择座位i-1,则第i-1个乘客的选择将影响第i个乘客的概率。此种情况恰好可以递归到P(i|K=i-1),只要假设第i-2个乘客就是金刚,它坐在了座位i-1上
  3. 如果第i-2个乘客选择座位i,则第i个乘客必然不能坐到自己座位,概率为0
  4. 如果第i-2个乘客选择座位i+1~N,则第i个座位必然能坐到自己座位,概率为1

根据全概率公式,有


 

如果继续计算下去,其实可以发现规律,
  

挖掘递归现象

 

其实,从上述推导的过程中,我们已经发现递归的迹象,是否可以再深入挖掘一下递归公式,进而避免繁琐的推导呢?

如果金刚坐在了座位j上,那么第j个乘客将会在座位1、j+1~N中随即选择一个座位。此时,乘客数量变成N-j+1,座位的数量也是N-j+1,第j个乘客恰好是剩余乘客的第1个,他变成了新的金刚。我们把他的座位编号从j换成1,这个变换不会影响问题的答案。下面我们来证明这个变换的安全性。

这个变换肯定会影响第j个乘客的概率,但是我们要计算的 并不包括第j个乘客,所以不用考虑这个影响。对于第2~i-1个乘客而言,如果第j个乘客无论是坐在1还是j,他们都可以坐在自己的座位上,对他们来说没有区别,对他们的概率也没有任何影响。因此,这个变换是安全的。

 

从问题的形式上看,变换之后的问题,与原问题等价,只是问题规模从N减小到N-j+1,且每位乘客的编号减小(j-1),座位编号也减小(j-1)。下面详细描述新问题:

飞机上有N-j+1个座位,座位编号依次为1,2,..N-j+1。恰好有N个乘客排队登机,第1个乘客的座位编号是1,第2个乘客的座位编号是2,...,第N-j+1个乘客的座位编号是N-j+1。每个乘客都应该坐在编号正确的座位上。但是,第1个乘客是不讲道理的金刚,他第一个进入飞机,随便(随机)挑了一个座位坐下。其他乘客敢怒不敢言,只好依次找座位坐下。如果自己的座位没有被占,则坐自己的作为,否则,也像金刚那样随便挑一个座位。现在,求第i个乘客(第1个乘客还是金刚)坐到自己座位的概率是多少?

 

利用递归形式计算条件概率

 

这里引入了一个新的变量n,表示乘客的总数。我们令F(i,n)表示在乘客总数为n的情况下,第i个乘客坐到自己座位的概率。显然,P(i) = F(i,N)。

下面,我们开始计算F(i,n),首先将P(i,N)计算结果中的N替换成n,然后利用子问题的递归形式。




 
 因此,我们有



 
 

结合金刚的概率,我们得到完整答案:

 

这篇关于编程之美-金刚坐飞机问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819271

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo