GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化

2024-03-17 04:12

本文主要是介绍GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ee.Image和ee.ImageCollection的利用列表进行可视化操作

这里我们主要的操作是利用简单的列表进行波段选择。可以利用[波段名称],[波段数字],[slice1:4]等等来实现我们遥感影像的选取。

代码:

安装python包

!pip install eemont
!pip install geemap

导入安装包和验证

import ee, eemont, geemap
import geemap.colormaps as cmMap = geemap.Map()

定义研究区

poi = ee.Geometry.PointFromQuery("Oporto, Portugal",user_agent = "eemont-tutorial-024")

影像处理分析

S2 = (ee.ImageCollection("COPERNICUS/S2_SR").filterBounds(poi).filterDate("2020-01-01","2020-07-01").preprocess().spectralIndices())

容器仿真方法

ee.ImageCollection
如果想知道图像集合中有多少幅图像,可以使用 len() 方法:

len(S2)

 73

如果要从集合中选择特定频段,可以使用 collection[band] 或 collection[[band1,band2,...,bandn]]:

RGB = S2[["B2","B3","B4"]]

 您还可以使用波段指数,或者数字或者slice等来实现这一功能:

RGB = S2["B[2-4]"]RGB = S2[[1,2,3]]RGB = S2[1:4]

使用容器模拟方法创建合成物!

Map = geemap.Map()
Map.addLayer(S2[[3,2,1]].median(),{"min":0,"max":0.3},"RGB")
Map.centerObject(poi)
Map

如果要从集合中选择图像,可将集合转换为列表,然后使用容器模拟方法!

我们将从集合中选择第一、第三和第五幅图像。

首先,我们将集合转换为列表:

S2list = S2.toList(S2.size())
S2list.getInfo()

'VEGETATION_PERCENTAGE': 6.85553, 'SOLAR_IRRADIANCE_B12': 85.25, 'SOLAR_IRRADIANCE_B10': 367.15, 'SENSOR_QUALITY': 'PASSED', 'SOLAR_IRRADIANCE_B11': 245.59, 'GENERATION_TIME': 1593324824000, 'SOLAR_IRRADIANCE_B8A': 955.32, 'FORMAT_CORRECTNESS': 'PASSED', 'CLOUD_COVERAGE_ASSESSMENT': 83.468688, 'THIN_CIRRUS_PERCENTAGE': 25.003883, 'system:time_end': 1593313613223, 'WATER_VAPOUR_RETRIEVAL_ACCURACY': 0, 'system:time_start': 1593313613223, 'DATASTRIP_ID': 'S2A_OPER_MSI_L2A_DS_EPAE_20200628T061344_S20200628T030457_N02.14', 'PROCESSING_BASELINE': '02.14', 'SENSING_ORBIT_NUMBER': 32, 'NODATA_PIXEL_PERCENTAGE': 38.487333, 'SENSING_ORBIT_DIRECTION': 'DESCENDING', 'GENERAL_QUALITY': 'PASSED', 'GRANULE_ID': 'L2A_T50TMK_A026198_20200628T030457', 'REFLECTANCE_CONVERSION_CORRECTION': 0.967843675317843, 'MEDIUM_PROBA_CLOUDS_PERCENTAGE': 47.631767, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B8': 104.057248542272, 'DATATAKE_TYPE': 'INS-NOBS', 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B9': 105.861973902451, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B6': 104.999263430107, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B7': 105.19973338743, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B4': 104.599846509095, 'MEAN_INCIDENCE_ZENITH_ANGLE_B1': 9.26483116852418, 'NOT_VEGETATED_PERCENTAGE': 3.850959, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B5': 104.806888871887, 'RADIOMETRIC_QUALITY': 'PASSED', 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B2': 103.845170510872, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B3': 104.253550988713, 'MEAN_INCIDENCE_ZENITH_ANGLE_B5': 9.16945293581117, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B1': 105.623602057599, 'MEAN_INCIDENCE_ZENITH_ANGLE_B4': 9.1511983118597, 'MEAN_INCIDENCE_ZENITH_ANGLE_B3': 9.12658446045674, 'MEAN_INCIDENCE_ZENITH_ANGLE_B2': 9.10159606126085, 'MEAN_INCIDENCE_ZENITH_ANGLE_B9': 9.29833105492727, 'MEAN_INCIDENCE_ZENITH_ANGLE_B8': 9.11119453954433, 'MEAN_INCIDENCE_ZENITH_ANGLE_B7': 9.21252733317911, 'DARK_FEATURES_PERCENTAGE': 0.355675, 'HIGH_PROBA_CLOUDS_PERCENTAGE': 10.833038, 'MEAN_INCIDENCE_ZENITH_ANGLE_B6': 9.18986663198901, 'UNCLASSIFIED_PERCENTAGE': 4.527044, 'MEAN_SOLAR_ZENITH_ANGLE': 22.5118973098276, 'MEAN_INCIDENCE_ZENITH_ANGLE_B8A': 9.2372672183666, 'RADIATIVE_TRANSFER_ACCURACY': 0, 'MGRS_TILE': '50TMK', 'CLOUDY_PIXEL_PERCENTAGE': 83.468688, 'PRODUCT_ID': 'S2A_MSIL2A_20200628T025551_N0214_R032_T50TMK_20200628T061344', 'MEAN_INCIDENCE_ZENITH_ANGLE_B10': 9.13676392418118, 'SOLAR_IRRADIANCE_B9': 812.92, 'SNOW_ICE_PERCENTAGE': 0, 'DEGRADED_MSI_DATA_PERCENTAGE': 0, 'MEAN_INCIDENCE_ZENITH_ANGLE_B11': 9.18102900320746, 'MEAN_INCIDENCE_ZENITH_ANGLE_B12': 9.23541231406127, 'SOLAR_IRRADIANCE_B6': 1287.61, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B10': 104.554556943066, 'SOLAR_IRRADIANCE_B5': 1424.64, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B11': 105.017646027147, 'SOLAR_IRRADIANCE_B8': 1041.63, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B12': 105.532199227014, 'SOLAR_IRRADIANCE_B7': 1162.08, 'SOLAR_IRRADIANCE_B2': 1959.66, 'SOLAR_IRRADIANCE_B1': 1884.69, 'SOLAR_IRRADIANCE_B4': 1512.06, 'GEOMETRIC_QUALITY': 'PASSED', 'SOLAR_IRRADIANCE_B3': 1823.24, 'system:asset_size': 930285505, 'WATER_PERCENTAGE': 0.939834, 'system:index': '20200628T025551_20200628T030457_T50TMK', 'DATATAKE_IDENTIFIER': 'GS2A_20200628T025551_026198_N02.14', 'AOT_RETRIEVAL_ACCURACY': 0, 'SPACECRAFT_NAME': 'Sentinel-2A', 'cloud_mask': {'type': 'Image', 'bands': [{'id': 'probability', 'data_type': {'type': 'PixelType', 'precision': 'int', 'min': 0, 'max': 255}, 'dimensions': [10980, 10980], 'crs': 'EPSG:32650', 'crs_transform': [10, 0, 399960, 0, -10, 4500000]}], 'version': 1593657504842083, 'id': 'COPERNICUS/S2_CLOUD_PROBABILITY/20200628T025551_20200628T030457_T50TMK', 'properties': {'system:time_start': 1593312951000, 'system:footprint': {'type': 'LinearRing', 'coordinates': [[115.83391273005041, 39.65570880191806], [115.83392735250536, 39.65570819516246], [117.11372157909372, 39.66150634210722], [117.11377544025689, 39.661542869738895], [117.1138348670573, 39.66157390309806], [117.11383854756858, 39.66158869507626], [117.11550249100466, 40.650753672685155], [117.11545428566758, 40.65079522150662], [117.11541344128565, 40.65084094968039], [117.11539396165452, 40.650843793685524], [115.81688569582906, 40.6448403917732], [115.81683171569112, 40.644803233824405], [115.81677204866992, 40.64477149287509], [115.81676861849282, 40.64475673572606], [115.82539420248055, 40.150295002117005], [115.83380892864993, 39.65579703594504], [115.83385712860958, 39.655756044964406], [115.83389828811886, 39.655710764692735], [115.83391273005041, 39.65570880191806]]}, 'system:time_end': 1593399351000, 'system:asset_size': 28499638, 'system:index': '20200628T025551_20200628T030457_T50TMK'}}, 'SATURATED_DEFECTIVE_PIXEL_PERCENTAGE': 0}}]

然后,我们就可以选择图像了! 

S2selected = S2list[[0,2,4]]

现在,我们在 S2selected 列表中有三幅图像:

len(S2selected)

这里是3景影像的长度

现在,让我们选择从第 21 张到最后一张的所有图片。

嘘!我们可以使用切片!

S2selected = S2list[20:]

看看我们有多少张影像!

len(S2selected)

52景影像

如果我们不想选择最后一幅图像,可以使用负指数!下面是一个例子:

S2selected = S2list[20:-5]
len(S2selected)

47
但它们是在 ee.List 对象中的 ee.Image 对象。我们可以保持这种状态,或者将它们转换成一个 ee.ImageCollection 对象!

S2selected = ee.ImageCollection(S2selected)

 ee.Image
我们还可以为 ee.Image 对象选择波段!

S2img = S2.first()

让我们选择 NDVI:

NDVI = S2img['NDVI']RGBimg = S2img[1:4]

可视化

Map = geemap.Map()
Map.addLayer(S2img["NDVI"],{"min":0,"max":1,"palette":cm.palettes.ndvi},"NDVI")
Map.centerObject(poi)
Map

这篇关于GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817762

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。