GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化

2024-03-17 04:12

本文主要是介绍GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ee.Image和ee.ImageCollection的利用列表进行可视化操作

这里我们主要的操作是利用简单的列表进行波段选择。可以利用[波段名称],[波段数字],[slice1:4]等等来实现我们遥感影像的选取。

代码:

安装python包

!pip install eemont
!pip install geemap

导入安装包和验证

import ee, eemont, geemap
import geemap.colormaps as cmMap = geemap.Map()

定义研究区

poi = ee.Geometry.PointFromQuery("Oporto, Portugal",user_agent = "eemont-tutorial-024")

影像处理分析

S2 = (ee.ImageCollection("COPERNICUS/S2_SR").filterBounds(poi).filterDate("2020-01-01","2020-07-01").preprocess().spectralIndices())

容器仿真方法

ee.ImageCollection
如果想知道图像集合中有多少幅图像,可以使用 len() 方法:

len(S2)

 73

如果要从集合中选择特定频段,可以使用 collection[band] 或 collection[[band1,band2,...,bandn]]:

RGB = S2[["B2","B3","B4"]]

 您还可以使用波段指数,或者数字或者slice等来实现这一功能:

RGB = S2["B[2-4]"]RGB = S2[[1,2,3]]RGB = S2[1:4]

使用容器模拟方法创建合成物!

Map = geemap.Map()
Map.addLayer(S2[[3,2,1]].median(),{"min":0,"max":0.3},"RGB")
Map.centerObject(poi)
Map

如果要从集合中选择图像,可将集合转换为列表,然后使用容器模拟方法!

我们将从集合中选择第一、第三和第五幅图像。

首先,我们将集合转换为列表:

S2list = S2.toList(S2.size())
S2list.getInfo()

'VEGETATION_PERCENTAGE': 6.85553, 'SOLAR_IRRADIANCE_B12': 85.25, 'SOLAR_IRRADIANCE_B10': 367.15, 'SENSOR_QUALITY': 'PASSED', 'SOLAR_IRRADIANCE_B11': 245.59, 'GENERATION_TIME': 1593324824000, 'SOLAR_IRRADIANCE_B8A': 955.32, 'FORMAT_CORRECTNESS': 'PASSED', 'CLOUD_COVERAGE_ASSESSMENT': 83.468688, 'THIN_CIRRUS_PERCENTAGE': 25.003883, 'system:time_end': 1593313613223, 'WATER_VAPOUR_RETRIEVAL_ACCURACY': 0, 'system:time_start': 1593313613223, 'DATASTRIP_ID': 'S2A_OPER_MSI_L2A_DS_EPAE_20200628T061344_S20200628T030457_N02.14', 'PROCESSING_BASELINE': '02.14', 'SENSING_ORBIT_NUMBER': 32, 'NODATA_PIXEL_PERCENTAGE': 38.487333, 'SENSING_ORBIT_DIRECTION': 'DESCENDING', 'GENERAL_QUALITY': 'PASSED', 'GRANULE_ID': 'L2A_T50TMK_A026198_20200628T030457', 'REFLECTANCE_CONVERSION_CORRECTION': 0.967843675317843, 'MEDIUM_PROBA_CLOUDS_PERCENTAGE': 47.631767, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B8': 104.057248542272, 'DATATAKE_TYPE': 'INS-NOBS', 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B9': 105.861973902451, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B6': 104.999263430107, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B7': 105.19973338743, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B4': 104.599846509095, 'MEAN_INCIDENCE_ZENITH_ANGLE_B1': 9.26483116852418, 'NOT_VEGETATED_PERCENTAGE': 3.850959, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B5': 104.806888871887, 'RADIOMETRIC_QUALITY': 'PASSED', 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B2': 103.845170510872, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B3': 104.253550988713, 'MEAN_INCIDENCE_ZENITH_ANGLE_B5': 9.16945293581117, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B1': 105.623602057599, 'MEAN_INCIDENCE_ZENITH_ANGLE_B4': 9.1511983118597, 'MEAN_INCIDENCE_ZENITH_ANGLE_B3': 9.12658446045674, 'MEAN_INCIDENCE_ZENITH_ANGLE_B2': 9.10159606126085, 'MEAN_INCIDENCE_ZENITH_ANGLE_B9': 9.29833105492727, 'MEAN_INCIDENCE_ZENITH_ANGLE_B8': 9.11119453954433, 'MEAN_INCIDENCE_ZENITH_ANGLE_B7': 9.21252733317911, 'DARK_FEATURES_PERCENTAGE': 0.355675, 'HIGH_PROBA_CLOUDS_PERCENTAGE': 10.833038, 'MEAN_INCIDENCE_ZENITH_ANGLE_B6': 9.18986663198901, 'UNCLASSIFIED_PERCENTAGE': 4.527044, 'MEAN_SOLAR_ZENITH_ANGLE': 22.5118973098276, 'MEAN_INCIDENCE_ZENITH_ANGLE_B8A': 9.2372672183666, 'RADIATIVE_TRANSFER_ACCURACY': 0, 'MGRS_TILE': '50TMK', 'CLOUDY_PIXEL_PERCENTAGE': 83.468688, 'PRODUCT_ID': 'S2A_MSIL2A_20200628T025551_N0214_R032_T50TMK_20200628T061344', 'MEAN_INCIDENCE_ZENITH_ANGLE_B10': 9.13676392418118, 'SOLAR_IRRADIANCE_B9': 812.92, 'SNOW_ICE_PERCENTAGE': 0, 'DEGRADED_MSI_DATA_PERCENTAGE': 0, 'MEAN_INCIDENCE_ZENITH_ANGLE_B11': 9.18102900320746, 'MEAN_INCIDENCE_ZENITH_ANGLE_B12': 9.23541231406127, 'SOLAR_IRRADIANCE_B6': 1287.61, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B10': 104.554556943066, 'SOLAR_IRRADIANCE_B5': 1424.64, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B11': 105.017646027147, 'SOLAR_IRRADIANCE_B8': 1041.63, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B12': 105.532199227014, 'SOLAR_IRRADIANCE_B7': 1162.08, 'SOLAR_IRRADIANCE_B2': 1959.66, 'SOLAR_IRRADIANCE_B1': 1884.69, 'SOLAR_IRRADIANCE_B4': 1512.06, 'GEOMETRIC_QUALITY': 'PASSED', 'SOLAR_IRRADIANCE_B3': 1823.24, 'system:asset_size': 930285505, 'WATER_PERCENTAGE': 0.939834, 'system:index': '20200628T025551_20200628T030457_T50TMK', 'DATATAKE_IDENTIFIER': 'GS2A_20200628T025551_026198_N02.14', 'AOT_RETRIEVAL_ACCURACY': 0, 'SPACECRAFT_NAME': 'Sentinel-2A', 'cloud_mask': {'type': 'Image', 'bands': [{'id': 'probability', 'data_type': {'type': 'PixelType', 'precision': 'int', 'min': 0, 'max': 255}, 'dimensions': [10980, 10980], 'crs': 'EPSG:32650', 'crs_transform': [10, 0, 399960, 0, -10, 4500000]}], 'version': 1593657504842083, 'id': 'COPERNICUS/S2_CLOUD_PROBABILITY/20200628T025551_20200628T030457_T50TMK', 'properties': {'system:time_start': 1593312951000, 'system:footprint': {'type': 'LinearRing', 'coordinates': [[115.83391273005041, 39.65570880191806], [115.83392735250536, 39.65570819516246], [117.11372157909372, 39.66150634210722], [117.11377544025689, 39.661542869738895], [117.1138348670573, 39.66157390309806], [117.11383854756858, 39.66158869507626], [117.11550249100466, 40.650753672685155], [117.11545428566758, 40.65079522150662], [117.11541344128565, 40.65084094968039], [117.11539396165452, 40.650843793685524], [115.81688569582906, 40.6448403917732], [115.81683171569112, 40.644803233824405], [115.81677204866992, 40.64477149287509], [115.81676861849282, 40.64475673572606], [115.82539420248055, 40.150295002117005], [115.83380892864993, 39.65579703594504], [115.83385712860958, 39.655756044964406], [115.83389828811886, 39.655710764692735], [115.83391273005041, 39.65570880191806]]}, 'system:time_end': 1593399351000, 'system:asset_size': 28499638, 'system:index': '20200628T025551_20200628T030457_T50TMK'}}, 'SATURATED_DEFECTIVE_PIXEL_PERCENTAGE': 0}}]

然后,我们就可以选择图像了! 

S2selected = S2list[[0,2,4]]

现在,我们在 S2selected 列表中有三幅图像:

len(S2selected)

这里是3景影像的长度

现在,让我们选择从第 21 张到最后一张的所有图片。

嘘!我们可以使用切片!

S2selected = S2list[20:]

看看我们有多少张影像!

len(S2selected)

52景影像

如果我们不想选择最后一幅图像,可以使用负指数!下面是一个例子:

S2selected = S2list[20:-5]
len(S2selected)

47
但它们是在 ee.List 对象中的 ee.Image 对象。我们可以保持这种状态,或者将它们转换成一个 ee.ImageCollection 对象!

S2selected = ee.ImageCollection(S2selected)

 ee.Image
我们还可以为 ee.Image 对象选择波段!

S2img = S2.first()

让我们选择 NDVI:

NDVI = S2img['NDVI']RGBimg = S2img[1:4]

可视化

Map = geemap.Map()
Map.addLayer(S2img["NDVI"],{"min":0,"max":1,"palette":cm.palettes.ndvi},"NDVI")
Map.centerObject(poi)
Map

这篇关于GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817762

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Python中DataFrame转列表的最全指南

《Python中DataFrame转列表的最全指南》在Python数据分析中,Pandas的DataFrame是最常用的数据结构之一,本文将为你详解5种主流DataFrame转换为列表的方法,大家可以... 目录引言一、基础转换方法解析1. tolist()直接转换法2. values.tolist()矩阵

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

python展开嵌套列表的多种方法

《python展开嵌套列表的多种方法》本文主要介绍了python展开嵌套列表的多种方法,包括for循环、列表推导式和sum函数三种方法,具有一定的参考价值,感兴趣的可以了解一下... 目录一、嵌套列表格式二、嵌套列表展开方法(一)for循环(1)for循环+append()(2)for循环+pyPhWiFd