(学习日记)2024.03.13:UCOSIII第十五节:基于时基列表的时延操作(持续更新)

本文主要是介绍(学习日记)2024.03.13:UCOSIII第十五节:基于时基列表的时延操作(持续更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:
由于时间的不足与学习的碎片化,写博客变得有些奢侈。
但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。
既然如此
不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录,记录笔者认为最通俗、最有帮助的资料,并尽量总结几句话指明本质,以便于日后搜索起来更加容易。


标题的结构如下:“类型”:“知识点”——“简短的解释”
部分内容由于保密协议无法上传。


点击此处进入学习日记的总目录

2024.03.13

  • 二十九、UCOSIII:基于时基列表的时延操作
    • 1、配置时钟中断时间
    • 2、创建任务
    • 3、任务放置到就绪列表中,并优先级排队
    • 4、将任务插入时基列表
      • 1. 确认时延
      • 2.对任务进行排序
      • 3. 确认插入时基列表哪个成员
      • 4. 对就绪列表的操作

二十九、UCOSIII:基于时基列表的时延操作

1、配置时钟中断时间

/* 配置SysTick 10ms 中断一次 */OS_CPU_SysTickInit (10);

在中断触发时运行OSTimeTick()函数

/* SysTick 中断服务函数 */
void SysTick_Handler(void)
{OSTimeTick();
}

OSTimeTick()函数定义如下:

void  OSTimeTick (void)
{/* 更新时基列表 */OS_TickListUpdate();/* 任务调度 */OSSched();
}

很明显,系统需要10ms一个时钟周期,每一个时钟周期更新一次时基列表

2、创建任务

创建任务需要使用 OSTaskCreate()函数,这部分和之前相同,不再概述。

任务指针格式如下:

struct os_tcb {CPU_STK         *StkPtr;CPU_STK_SIZE    StkSize;/* 任务延时周期个数 */OS_TICK         TaskDelayTicks;/* 任务优先级 */OS_PRIO         Prio;/* 就绪列表双向链表的下一个指针 */OS_TCB          *NextPtr;/* 就绪列表双向链表的前一个指针 */OS_TCB          *PrevPtr;/* 时基列表相关字段 */OS_TCB          *TickNextPtr;OS_TCB          *TickPrevPtr;	OS_TICK_SPOKE   *TickSpokePtr;	OS_TICK         TickCtrMatch;	OS_TICK         TickRemain;		
};

3、任务放置到就绪列表中,并优先级排队

任务创建好之后,会放到就绪列表中,并在优先级列表对应值中设为1
上述在之前章节已整理,本次不再概述。

4、将任务插入时基列表

当任务需要延时时,使用OS_TickListInsert()函数将任务插入时基列表。

/* 将一个任务插入时基列表,根据延时时间的大小升序排列 */
void  OS_TickListInsert (OS_TCB *p_tcb,OS_TICK time)

在这里插入图片描述
时基列表OSCfg_TickWheel[]OS_CFG_TICK_WHEEL_SIZE个成员。

OS_CFG_TICK_WHEEL_SIZE的推 荐值为任务数/4,不推荐使用偶数。
如果算出来是偶数,则加1变成质数,实际上质数是一个很好的选择。

时基列表OSCfg_TickWheel[]每个成员有三个值。

typedefstruct  os_tick_spoke       OS_TICK_SPOKE;
//在μC/OS-III中,内核对象的数据类型都会用大写字母重新定义。struct  os_tick_spoke {OS_TCB              *FirstPtr;//每个成员都包含一条单向链表, 被插入该条链表的TCB会按照延时时间做升序排列。//FirstPtr用于指向这条单向链表的第一个节点。OS_OBJ_QTY           NbrEntries;//NbrEntries表示该条单向链表当前有多少个节点。OS_OBJ_QTY           NbrEntriesMax;//NbrEntriesMax记录该条单向链表最多的时候有多少个节点, 在增加节点的时候会刷新,在删除节点的时候不刷新。
};

在这里插入图片描述

1. 确认时延

当任务需要插入到时基列表中时,首先需要确认需要时延几个周期,即TickRemain的值。
然后确认OSTickCtr的值,将TickRemainOSTickCtr相加得到TickCtrMatch

OSTickCtr是一个全局变量, 记录的是系统自启动以来或者自上次复位以来经过了多少个SysTick周期。
OSTickCtr的值每经过一个SysTick周期其值就加一

2.对任务进行排序

众所周知,任务随时都有可能加入到时基列表中,那么怎么能高效的将各个任务按时延长短进行排序,并快速取用呢?
答案就在TickCtrMatch这个变量上,TickCtrMatch变量是系统设计时的一个巧思妙想。
在这里插入图片描述
当一个任务需要插入时基列表中时,我们先获得TickCtrMatch值。
因为TickCtrMatch值是TickRemainOSTickCtr的和,即当前时间+时延时间,得到的值就是时延结束的绝对时间
这样就能将所有任务按照 实验结束的绝对时间 进行排序。

3. 确认插入时基列表哪个成员

TickCtrMatchOS_CFG_TICK_WHEEL_SIZE进行求余,即对成员总数进行求余,得到的数就是存放任务的下标。
这样做是为了对任务进行分类。

假如成员总数为10(但实际上应该是个质数),当前系统时间为502
50210求余得2,那么在任务时延结束绝对时间TickCtrMatch502,513,515,522的几个任务里只有502,522余数为2。我们不需要跟其他数比,只需要在余数为2的任务里找就行,这样就可以极大的减少寻找时间

同时将余数相同的任务按顺序排列,那么当系统时间为502,任务时延结束的绝对时间为522,那么之后的任务就不需要再找了,因为一定会比522大。
在这里插入图片描述

4. 对就绪列表的操作

当任务加入到时基列表中后,就需要从就绪列表中删除。
时基列表OSCfg_TickWheel[]该成员的NbrEntries加1。

当任务任务时延结束绝对时间TickCtrMatch等于系统时间OSTickCtr时就把任务加入到就绪列表,并从时基列表中删除。
时基列表OSCfg_TickWheel[]该成员的NbrEntries减1。

每个时间循环都要确定NbrEntriesMax大于等于NbrEntries

这篇关于(学习日记)2024.03.13:UCOSIII第十五节:基于时基列表的时延操作(持续更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817656

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from