tslearn,一个实用的 Python 库!

2024-03-16 13:20
文章标签 python 实用 tslearn

本文主要是介绍tslearn,一个实用的 Python 库!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多资料获取

📚 个人网站:ipengtao.com


大家好,今天为大家分享一个实用的 Python 库 - tslearn。

Github地址:https://github.com/tslearn-team/tslearn


在数据科学领域,时间序列分析是一项至关重要的任务,涵盖了诸多领域,如金融、气象、生物学、工业生产等。Python 中的 tslearn 库为时间序列分析提供了丰富的工具和功能,使得用户能够轻松地处理、分析和建模时间序列数据。本文将深入探讨 tslearn 库的特性、用法以及应用场景,并提供丰富的示例代码,帮助更好地理解和应用这一强大工具。

tslearn 是什么?

tslearn 是一个专注于时间序列分析的 Python 库,提供了一系列用于处理时间序列数据的工具和算法。

tslearn 主要特点包括:

  • 提供了丰富的时间序列处理和分析工具,包括距离度量、时间序列降维、时间序列分类和聚类等功能。
  • 支持多种时间序列数据类型和格式,包括等长时间序列、不等长时间序列、多变量时间序列等。
  • 提供了高效的实现和并行计算功能,使得用户能够快速处理大规模时间序列数据。

安装 tslearn 库

要开始使用 tslearn 库,首先需要安装它。

可以通过 pip 来进行安装:

pip install tslearn

安装完成后,就可以开始使用 tslearn 来进行时间序列分析了。

使用示例

1. 加载和可视化时间序列数据

import numpy as np
from tslearn.datasets import UCR_UEA_datasets
import matplotlib.pyplot as plt# 加载数据集
X_train, y_train, X_test, y_test = UCR_UEA_datasets().load_dataset("TwoPatterns")# 可视化部分时间序列数据
plt.figure(figsize=(10, 6))
for i in range(5):plt.subplot(5, 1, i+1)plt.plot(X_train[i].ravel())plt.title("Class: {}".format(y_train[i]))
plt.tight_layout()
plt.show()

2. 时间序列降维和可视化

from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.shapelets import ShapeletModel
from tslearn.shapelets import grabocka_params_to_shapelet_size_dict# 时间序列标准化
scaler = TimeSeriesScalerMeanVariance(mu=0., std=1.)  # 标准化
X_train_std = scaler.fit_transform(X_train)# 训练形状模型
shapelet_sizes = grabocka_params_to_shapelet_size_dict(n_ts=X_train_std.shape[0],ts_sz=X_train_std.shape[1],n_classes=len(set(y_train)),l=0.1, r=1)
shp_clf = ShapeletModel(n_shapelets_per_size=shapelet_sizes,optimizer="sgd", weight_regularizer=0.01,max_iter=200, verbose_level=0)
shp_clf.fit(X_train_std, y_train)# 可视化形状模型
plt.figure(figsize=(10, 6))
for i, sz in enumerate(shapelet_sizes.keys()):plt.subplot(len(shapelet_sizes), 1, i + 1)plt.title("%d shapelets of size %d" % (shapelet_sizes[sz], sz))for shp in shp_clf.shapelets_:if tslearn.utils.common.num_cuts(shp) == sz:plt.plot(shp.ravel())
plt.tight_layout()
plt.show()

3. 时间序列分类

from sklearn.metrics import accuracy_score
from tslearn.neighbors import KNeighborsTimeSeriesClassifier# K最近邻分类器
knn = KNeighborsTimeSeriesClassifier(n_neighbors=1, metric="dtw")
knn.fit(X_train, y_train)# 预测并评估分类器性能
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

tslearn 库的应用场景

Python tslearn 库是一个专门用于处理时间序列数据的强大工具,提供了丰富的功能和算法,适用于多种应用场景。

1. 时间序列分类

时间序列分类是识别时间序列数据中的不同类别或模式的任务,例如识别运动传感器数据中的不同运动类型。

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.shapelets import ShapeletModel, grabocka_params_to_shapelet_size_dict
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 加载数据集
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")
X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.2)# 标准化时间序列
scaler = TimeSeriesScalerMeanVariance()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)# 训练形状模型
shapelet_sizes = grabocka_params_to_shapelet_size_dict(n_ts=X_train.shape[0],ts_sz=X_train.shape[1],n_classes=len(set(y_train)),l=0.1, r=1)
shp_clf = ShapeletModel(n_shapelets_per_size=shapelet_sizes,optimizer="sgd", weight_regularizer=0.01,max_iter=200, verbose_level=0)
shp_clf.fit(X_train, y_train)# 预测并评估分类器性能
y_pred = shp_clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

2. 时间序列聚类

时间序列聚类是将相似的时间序列数据聚集到一起,发现数据中的群集结构和模式的任务,例如识别用户行为数据中的不同行为簇。

from tslearn.clustering import TimeSeriesKMeans
from tslearn.datasets import CachedDatasets# 加载数据集
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")# 使用 TimeSeriesKMeans 聚类器
km = TimeSeriesKMeans(n_clusters=3, metric="dtw", verbose=True)
y_pred = km.fit_predict(X_train)# 可视化聚类结果
import matplotlib.pyplot as plt
plt.figure()
for cl in range(3):plt.subplot(3, 1, cl + 1)for i in range(len(X_train[y_pred == cl])):plt.plot(X_train[y_pred == cl][i].ravel(), "k-", alpha=0.3)plt.title("Cluster %d" % (cl + 1))
plt.tight_layout()
plt.show()

3. 时间序列降维

时间序列降维是将高维的时间序列数据降低到低维空间的任务,例如可视化高维传感器数据。

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.utils import to_time_series_dataset
from tslearn.shapelets import ShapeletTransform
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt# 加载数据集
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")# 时间序列标准化
scaler = TimeSeriesScalerMeanVariance()
X_train_scaled = scaler.fit_transform(X_train)# 将数据转换为时间序列数据集
X_train_ts = to_time_series_dataset(X_train_scaled)# 应用形状转换器
st = ShapeletTransform(n_shapelets_per_size={20: 5},time_contract_in_mins=0.5)
st.fit(X_train_ts, y_train)# 降维并可视化
X_train_transformed = st.transform(X_train_ts)
X_embedded = TSNE(n_components=2).fit_transform(X_train_transformed)
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y_train)
plt.colorbar()
plt.title("Shapelet transform of the Trace dataset")
plt.show()

总结

通过本文的介绍,对 tslearn 库有了更深入的了解。tslearn 提供了丰富的功能和工具,使得用户能够轻松地处理和分析时间序列数据。无论是在时间序列分类、聚类、降维还是预测方面,tslearn 都能够为用户提供强大的支持,成为时间序列分析的得力助手。希望本文能够帮助大家更好地掌握 tslearn 库的用法,并将其应用到实际的时间序列分析和建模工作中。


Python学习路线

在这里插入图片描述

更多资料获取

📚 个人网站:ipengtao.com

如果还想要领取更多更丰富的资料,可以点击文章下方名片,回复【优质资料】,即可获取 全方位学习资料包。

在这里插入图片描述
点击文章下方链接卡片,回复【优质资料】,可直接领取资料大礼包。

这篇关于tslearn,一个实用的 Python 库!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815629

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python