tslearn,一个实用的 Python 库!

2024-03-16 13:20
文章标签 python 实用 tslearn

本文主要是介绍tslearn,一个实用的 Python 库!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多资料获取

📚 个人网站:ipengtao.com


大家好,今天为大家分享一个实用的 Python 库 - tslearn。

Github地址:https://github.com/tslearn-team/tslearn


在数据科学领域,时间序列分析是一项至关重要的任务,涵盖了诸多领域,如金融、气象、生物学、工业生产等。Python 中的 tslearn 库为时间序列分析提供了丰富的工具和功能,使得用户能够轻松地处理、分析和建模时间序列数据。本文将深入探讨 tslearn 库的特性、用法以及应用场景,并提供丰富的示例代码,帮助更好地理解和应用这一强大工具。

tslearn 是什么?

tslearn 是一个专注于时间序列分析的 Python 库,提供了一系列用于处理时间序列数据的工具和算法。

tslearn 主要特点包括:

  • 提供了丰富的时间序列处理和分析工具,包括距离度量、时间序列降维、时间序列分类和聚类等功能。
  • 支持多种时间序列数据类型和格式,包括等长时间序列、不等长时间序列、多变量时间序列等。
  • 提供了高效的实现和并行计算功能,使得用户能够快速处理大规模时间序列数据。

安装 tslearn 库

要开始使用 tslearn 库,首先需要安装它。

可以通过 pip 来进行安装:

pip install tslearn

安装完成后,就可以开始使用 tslearn 来进行时间序列分析了。

使用示例

1. 加载和可视化时间序列数据

import numpy as np
from tslearn.datasets import UCR_UEA_datasets
import matplotlib.pyplot as plt# 加载数据集
X_train, y_train, X_test, y_test = UCR_UEA_datasets().load_dataset("TwoPatterns")# 可视化部分时间序列数据
plt.figure(figsize=(10, 6))
for i in range(5):plt.subplot(5, 1, i+1)plt.plot(X_train[i].ravel())plt.title("Class: {}".format(y_train[i]))
plt.tight_layout()
plt.show()

2. 时间序列降维和可视化

from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.shapelets import ShapeletModel
from tslearn.shapelets import grabocka_params_to_shapelet_size_dict# 时间序列标准化
scaler = TimeSeriesScalerMeanVariance(mu=0., std=1.)  # 标准化
X_train_std = scaler.fit_transform(X_train)# 训练形状模型
shapelet_sizes = grabocka_params_to_shapelet_size_dict(n_ts=X_train_std.shape[0],ts_sz=X_train_std.shape[1],n_classes=len(set(y_train)),l=0.1, r=1)
shp_clf = ShapeletModel(n_shapelets_per_size=shapelet_sizes,optimizer="sgd", weight_regularizer=0.01,max_iter=200, verbose_level=0)
shp_clf.fit(X_train_std, y_train)# 可视化形状模型
plt.figure(figsize=(10, 6))
for i, sz in enumerate(shapelet_sizes.keys()):plt.subplot(len(shapelet_sizes), 1, i + 1)plt.title("%d shapelets of size %d" % (shapelet_sizes[sz], sz))for shp in shp_clf.shapelets_:if tslearn.utils.common.num_cuts(shp) == sz:plt.plot(shp.ravel())
plt.tight_layout()
plt.show()

3. 时间序列分类

from sklearn.metrics import accuracy_score
from tslearn.neighbors import KNeighborsTimeSeriesClassifier# K最近邻分类器
knn = KNeighborsTimeSeriesClassifier(n_neighbors=1, metric="dtw")
knn.fit(X_train, y_train)# 预测并评估分类器性能
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

tslearn 库的应用场景

Python tslearn 库是一个专门用于处理时间序列数据的强大工具,提供了丰富的功能和算法,适用于多种应用场景。

1. 时间序列分类

时间序列分类是识别时间序列数据中的不同类别或模式的任务,例如识别运动传感器数据中的不同运动类型。

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.shapelets import ShapeletModel, grabocka_params_to_shapelet_size_dict
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 加载数据集
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")
X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.2)# 标准化时间序列
scaler = TimeSeriesScalerMeanVariance()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)# 训练形状模型
shapelet_sizes = grabocka_params_to_shapelet_size_dict(n_ts=X_train.shape[0],ts_sz=X_train.shape[1],n_classes=len(set(y_train)),l=0.1, r=1)
shp_clf = ShapeletModel(n_shapelets_per_size=shapelet_sizes,optimizer="sgd", weight_regularizer=0.01,max_iter=200, verbose_level=0)
shp_clf.fit(X_train, y_train)# 预测并评估分类器性能
y_pred = shp_clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

2. 时间序列聚类

时间序列聚类是将相似的时间序列数据聚集到一起,发现数据中的群集结构和模式的任务,例如识别用户行为数据中的不同行为簇。

from tslearn.clustering import TimeSeriesKMeans
from tslearn.datasets import CachedDatasets# 加载数据集
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")# 使用 TimeSeriesKMeans 聚类器
km = TimeSeriesKMeans(n_clusters=3, metric="dtw", verbose=True)
y_pred = km.fit_predict(X_train)# 可视化聚类结果
import matplotlib.pyplot as plt
plt.figure()
for cl in range(3):plt.subplot(3, 1, cl + 1)for i in range(len(X_train[y_pred == cl])):plt.plot(X_train[y_pred == cl][i].ravel(), "k-", alpha=0.3)plt.title("Cluster %d" % (cl + 1))
plt.tight_layout()
plt.show()

3. 时间序列降维

时间序列降维是将高维的时间序列数据降低到低维空间的任务,例如可视化高维传感器数据。

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.utils import to_time_series_dataset
from tslearn.shapelets import ShapeletTransform
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt# 加载数据集
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")# 时间序列标准化
scaler = TimeSeriesScalerMeanVariance()
X_train_scaled = scaler.fit_transform(X_train)# 将数据转换为时间序列数据集
X_train_ts = to_time_series_dataset(X_train_scaled)# 应用形状转换器
st = ShapeletTransform(n_shapelets_per_size={20: 5},time_contract_in_mins=0.5)
st.fit(X_train_ts, y_train)# 降维并可视化
X_train_transformed = st.transform(X_train_ts)
X_embedded = TSNE(n_components=2).fit_transform(X_train_transformed)
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y_train)
plt.colorbar()
plt.title("Shapelet transform of the Trace dataset")
plt.show()

总结

通过本文的介绍,对 tslearn 库有了更深入的了解。tslearn 提供了丰富的功能和工具,使得用户能够轻松地处理和分析时间序列数据。无论是在时间序列分类、聚类、降维还是预测方面,tslearn 都能够为用户提供强大的支持,成为时间序列分析的得力助手。希望本文能够帮助大家更好地掌握 tslearn 库的用法,并将其应用到实际的时间序列分析和建模工作中。


Python学习路线

在这里插入图片描述

更多资料获取

📚 个人网站:ipengtao.com

如果还想要领取更多更丰富的资料,可以点击文章下方名片,回复【优质资料】,即可获取 全方位学习资料包。

在这里插入图片描述
点击文章下方链接卡片,回复【优质资料】,可直接领取资料大礼包。

这篇关于tslearn,一个实用的 Python 库!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815629

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At