基于STM32F407ZET6的环境温湿度监控系统(粤嵌GEC-M4)

2024-03-16 03:59

本文主要是介绍基于STM32F407ZET6的环境温湿度监控系统(粤嵌GEC-M4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注意使用事项:
开发板如下
在这里插入图片描述

由于外部晶振是8M,需要修改setup和stm32f4头文件的晶振值。
操作如下:
system_stm32f4xx.c的254行

#define PLL_M      8

stm32f4xx.h的127行

  #define HSE_VALUE    ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */

基于STM32F407ZET6的环境温湿度监控系统

  • 工程文件下载如下
  • 功能介绍和使用说明
  • 如下代码
    • 目录如下
    • main.c
    • system.c
    • system.h
    • KEY.c
    • KEY.h
    • LED.c
    • LED.h
    • BEEP.c
    • BEEP.h
    • UART.c
    • UART.h
    • CODED_LOCK.c
    • CODED_LOCK.h
    • TIMER.c
    • TIMER.h
    • DHT11.c
    • DHT11.h
    • ADC.c
    • ADC.h

工程文件下载如下

下载点这里

功能介绍和使用说明

下载程序后打开串口调试助手,按一下复位按键,如图。
在这里插入图片描述
通过按键输入1234进入,或者输入指令open#进入系统,密码错误会连响两下,正确会长响一下,进入之后如图。
在这里插入图片描述
到了控制界面,通过输入指令mode0或者mode1切换手动模式和自动模式,手动模式可以使用滑动变阻器控制LED1亮度,自动模式可以由光敏电阻调节灯光亮度。
温度阈值和湿度阈值是温度和湿度的临界值,当温度高于临界值,LED3亮,否则灭,当湿度高于临界值,LED2亮。
灯光亮度是滑动变阻器值,光照值是光敏电阻值。
温度阈值可以由指令txx#修改,比如t20就是修改到20
湿度阈值可以由指令hxx#修改,比如h20就是修改到20
最后输入off#退出系统

如下代码

目录如下

在这里插入图片描述

main.c

#include "CODED_LOCK.h"int main(void)
{while(1){CODED_LOCK_Open();}
}

system.c

#include "system.h"void System_Init(void)
{LED_Init();KEY_Init();BEEP_Init();UART1_Init(115200);//TIM3_Init(10000,8400);//ADC1_Init();adc_init();adc3_init();TIM14_init();TIM_SetCompare1(TIM14,95);
}//软件延时
void delay_us(uint32_t nus)
{SysTick->CTRL = 0; 			// Disable SysTick,关闭系统时钟后才能设置寄存器SysTick->LOAD = SystemCoreClock/8/1000000*nus; 		//设置计数值SysTick->VAL = 0; 			// Clear current value as well as count flag,清空当前值还有标志位SysTick->CTRL = 1; 			// Enable SysTick timer with processor clock,使能系统定时器开始计算,且使用8分频的时钟while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set,等待计数完成SysTick->CTRL = 0; 			// Disable SysTick,关闭系统时钟代表说不再进行定时计数	}void delay_ms(uint32_t nms)
{while(nms --){SysTick->CTRL = 0; 			// Disable SysTick,关闭系统时钟后才能设置寄存器SysTick->LOAD = SystemCoreClock/8/1000; 		// 设置计数值SysTick->VAL = 0; 			// Clear current value as well as count flag,清空当前值还有标志位SysTick->CTRL = 1; 			// Enable SysTick timer with processor clock,使能系统定时器开始计算,且使用8分频的时钟while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set,等待计数完成SysTick->CTRL = 0; 			// Disable SysTick,关闭系统时钟代表说不再进行定时计数	}
}

system.h

#ifndef __system_H_
#define __system_H_#include "stm32f4xx.h"
#include "LED.h"
#include "BEEP.h"
#include "KEY.h"
#include "UART.h"
#include "TIMER.h"
#include "DHT11.h"
#include "ADC.h"
#include "string.h"//位带操作,实现51类似的GPIO控制功能
//具体实现思想,参考<<CM3权威指南>>第五章(87页~92页).M4同M3类似,只是寄存器地址变了.
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+\((addr & 0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr))//把值类型转成地址类型
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 
//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
#define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
#define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
#define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     #define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 //IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 #define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 #define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 #define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 #define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //输入#define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //输入#define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //输入#define PHout(n)   BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
#define PHin(n)    BIT_ADDR(GPIOH_IDR_Addr,n)  //输入#define PIout(n)   BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
#define PIin(n)    BIT_ADDR(GPIOI_IDR_Addr,n)  //输入void System_Init(void);
void delay_us(uint32_t nus);
void delay_ms(uint32_t nms);#endif 

KEY.c

#include "KEY.h" void KEY_Init(void)
{GPIO_InitTypeDef gpio;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA|RCC_AHB1Periph_GPIOE,ENABLE);gpio.GPIO_Mode=GPIO_Mode_IN;	gpio.GPIO_PuPd=GPIO_PuPd_UP;gpio.GPIO_Pin=GPIO_Pin_0;GPIO_Init(GPIOA,&gpio);gpio.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4;	GPIO_Init(GPIOE,&gpio);
}

KEY.h

#ifndef __KEY_H_
#define __KEY_H_#include "system.h" #define KEY0 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0)
#define KEY1 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_2)
#define KEY2 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3)
#define KEY3 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_4)
#define KEY ((KEY0)|(KEY1<<1)|(KEY2<<2)|(KEY3<<3))void KEY_Init(void);
//unsigned char KEY_Scan(void);#endif 

LED.c

#include "LED.h" void LED_Init(void)
{GPIO_InitTypeDef gpio;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF|RCC_AHB1Periph_GPIOE,ENABLE);gpio.GPIO_Mode=GPIO_Mode_OUT;	gpio.GPIO_PuPd=GPIO_PuPd_UP;gpio.GPIO_Speed=GPIO_Speed_100MHz;gpio.GPIO_OType=GPIO_OType_PP;gpio.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10;GPIO_Init(GPIOF,&gpio);gpio.GPIO_Pin=GPIO_Pin_13|GPIO_Pin_14;	GPIO_Init(GPIOE,&gpio);GPIO_SetBits(GPIOF,GPIO_Pin_9|GPIO_Pin_10);GPIO_SetBits(GPIOE,GPIO_Pin_13|GPIO_Pin_14);
}

LED.h

#ifndef __LED_H_
#define __LED_H_#include "system.h"
void LED_Init(void);#endif 

BEEP.c

#include "BEEP.h" void BEEP_Init(void)
{GPIO_InitTypeDef gpio;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF,ENABLE);gpio.GPIO_Mode=GPIO_Mode_OUT;	gpio.GPIO_PuPd=GPIO_PuPd_UP;gpio.GPIO_Speed=GPIO_Speed_100MHz;gpio.GPIO_OType=GPIO_OType_PP;gpio.GPIO_Pin=GPIO_Pin_8;GPIO_Init(GPIOF,&gpio);GPIO_ResetBits(GPIOF,GPIO_Pin_8);	
}

BEEP.h

#ifndef __BEEP_H_
#define __BEEP_H_#include "system.h" 
void BEEP_Init(void);#endif 

UART.c

#include "UART.h"void UART1_Init(uint32_t baudrate) 
{GPIO_InitTypeDef GPIO_InitStruct;USART_InitTypeDef USART_InitStruct;NVIC_InitTypeDef NVIC_InitStructure;// 使能USART1和GPIOA的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);// 配置USART1的引脚GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; // PA9(TX), PA10(RX)GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;GPIO_Init(GPIOA, &GPIO_InitStruct);// 将引脚复用为USART1GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1); // TXGPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1); // RX// 配置USART1USART_InitStruct.USART_BaudRate = baudrate;USART_InitStruct.USART_WordLength = USART_WordLength_8b;USART_InitStruct.USART_StopBits = USART_StopBits_1;USART_InitStruct.USART_Parity = USART_Parity_No;USART_InitStruct.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_Init(USART1, &USART_InitStruct);/* 配置中断参数--使能中断 */NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);//设置中断条件---接收缓冲区有数据就产生中断USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);// 使能USART1USART_Cmd(USART1, ENABLE);}int fputc(int ch, FILE *f)
{/* 发送一个字节数据到串口 */USART_SendData(USART1, (uint8_t) ch);/* 等待发送完毕 */while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);		return (ch);
}///重定向c库函数scanf到串口,重写向后可使用scanf、getchar等函数
int fgetc(FILE *f)
{/* 等待串口输入数据 */while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET);return (int)USART_ReceiveData(USART1);
}
extern uint8_t usart_recv[1024];//接受串口数据---字符串
extern int recv_i;//接收数组下标
extern int recv_end;//接收标记  0 没有完  1 完了void USART1_IRQHandler(void)//"hello#"
{uint8_t d;//检测中断是否产生if(USART_GetITStatus(USART1, USART_IT_RXNE)==SET){d =USART_ReceiveData(USART1);if(recv_i < 1024&& d != '#'&& recv_end ==0){usart_recv[recv_i++] = d;}else{recv_end = 1;}//把接收的数据回发给发送方//USART_SendData(USART1,d); //h//while(USART_GetFlagStatus( USART1,USART_FLAG_TXE)==0);//等待上一个数据发送完毕}//把中断标志位清空,方便接收下一次中断USART_ClearITPendingBit(USART1, USART_IT_RXNE);}

UART.h

#ifndef __UART_H_
#define __UART_H_#include <stdio.h>
#include "system.h"void UART1_Init(uint32_t baudrate) ;#endif 

CODED_LOCK.c

#include "CODED_LOCK.h"uint8_t pass_num[4]={1,2,3,4};
uint8_t input_num[4]={0,0,0,0};
uint8_t open=0;
uint8_t dht_data[5];
int ret = 0;
uint32_t adc_val;
int adc_vol;
uint32_t light_val;
int light_vol;unsigned char mode=0;uint8_t usart_recv[1024]={0};//接受串口数据---字符串
int recv_i = 0;//接收数组下标
int recv_end = 0;//接收标记  0 没有完  1 完了int byte_light=40;
int byte_temp=40;
int byte_humi=90;
char display=1;
void CODED_LOCK_Open(void)
{System_Init();while(1){if(recv_end ==1){if(strncmp((char *)usart_recv,"open",6)== 0){//打开D1input_num[0]=1;input_num[1]=2;input_num[2]=3;input_num[3]=4;}else if(strncmp((char *)usart_recv,"mode1",6)== 0)mode=1;else if(strncmp((char *)usart_recv,"mode0",6)== 0)mode=0;else if(strncmp((char *)usart_recv,"display",7)== 0)display=1;else if(strncmp((char *)usart_recv,"off",7)== 0)open=0;else if(usart_recv[0]==116){//printf("recv is %d ,%d\n",usart_recv[1]-48,usart_recv[2]-48);byte_temp=(usart_recv[1]-48)*10+(usart_recv[2]-48);}else if(usart_recv[0]==104){//printf("recv is %d ,%d\n",usart_recv[1]-48,usart_recv[2]-48);byte_humi=(usart_recv[1]-48)*10+(usart_recv[2]-48);}memset(usart_recv,0,1024);//清空接收缓冲区数组recv_end = 0;//接收标志置零,方便下一个字符串的接收recv_i = 0;//下标清零display=1;}		
//		USART_ITConfig(USART1, USART_IT_RXNE, DISABLE);
//		TIM_ITConfig(TIM3,TIM_IT_Update , DISABLE);ADC_SoftwareStartConv(ADC1);//等待转换完成while(ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC)!=SET);//获取ADC1的转换结果adc_val=ADC_GetConversionValue(ADC1);//将结果值转换为电压值adc_vol=adc_val*100/4095;ADC_SoftwareStartConv(ADC3);//等待转换完成while(ADC_GetFlagStatus(ADC3,ADC_FLAG_EOC)!=SET);//获取ADC1的转换结果light_val=ADC_GetConversionValue(ADC3);//将结果值转换为电压值light_vol=light_val*100/4095;
//		TIM_ITConfig(TIM3,TIM_IT_Update , ENABLE);
//		USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);		if((mode==1)&&(open==1)){TIM_SetCompare1(TIM14,90-light_vol);}else if((mode==0)&&(open==1)){TIM_SetCompare1(TIM14,110-adc_vol);}			 if(open==1){if(dht_data[0]<byte_humi)PFout(10)=1;else PFout(10)=0;if(dht_data[2]<byte_temp)PEout(13)=1;else PEout(13)=0;}ret = Get_DHT11_Data(dht_data);KEY_Scan();if((input_num[0]!=0)&&(input_num[1]!=0)&&(input_num[2]!=0)&&(input_num[3]!=0)){if((input_num[0]==pass_num[0])&&(input_num[1]==pass_num[1])&&(input_num[2]==pass_num[2])&&(input_num[3]==pass_num[3])){PFout(8)=1;delay_ms(1000);PFout(8)=0;open=1;display=1;}else{PFout(8)=1;delay_ms(500);PFout(8)=0;delay_ms(500);PFout(8)=1;delay_ms(500);PFout(8)=0;printf("密码错误,请重新输入\r\n");open=0;}input_num[0]=input_num[1]=input_num[2]=input_num[3]=0;}if((open==1)&&(display==1)){display=0;printf("/**************温湿度控制界面******************/\r\n");if(mode==0)printf("/*****模式:手动\r\n");if(mode==1)printf("/*****模式:自动\r\n");printf("/*****当前湿度:%d/\r\n",dht_data[0]);printf("/*****当前温度:%d/\r\n",dht_data[2]);printf("/*****灯光亮度:%d/\r\n",adc_vol);printf("/*****光照值:%d/\r\n",110-light_vol);printf("/*****湿度阈值:%d/\r\n",byte_humi);printf("/*****温度阈值:%d/\r\n",byte_temp);printf("/**********************************************/\r\n");}if((open==0)&&(display==1)){display=0;printf("/**************密码输入界面******************/\r\n");printf("密码:%d %d %d %d\r\n",input_num[0],input_num[1],input_num[2],input_num[3]);printf("/**********************************************/\r\n");}		}
}void Input_Data(char data)
{if(input_num[0]==0){input_num[0]=data;display=1;}else if(input_num[1]==0){input_num[1]=data;display=1;}else if(input_num[2]==0){input_num[2]=data;display=1;}else if(input_num[3]==0){input_num[3]=data;display=1;}
}void KEY_Scan(void)
{static char keybyte=0;static char key=0x0f;//static char return_num=0;//if(KEY==0x0f)return 1;if((KEY!=0x0f)&&(keybyte==0)){key=0x0f;key &=KEY;keybyte=1;}if((KEY==0x0f)&&(keybyte==1)){keybyte=0;switch(key){case 0x0e:Input_Data(1);break;case 0x0d:Input_Data(2);break;case 0x0b:Input_Data(3);break;case 0x07:Input_Data(4);break;//default: return 0;}}
}

CODED_LOCK.h

#ifndef __CODED_LOCK_H_
#define __CODED_LOCK_H_#include "system.h"
void CODED_LOCK_Init(void);
void CODED_LOCK_Open(void);
void KEY_Scan(void);
void Input_Data(char data);#endif 

TIMER.c

#include "TIMER.h"//tim3初始化
void TIM3_Init(uint32_t period,uint32_t Prescaler)
{//period=5000 Prescaler=8400TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;/* 打开TIM3时钟  */RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);//定时器参数配置:频率  计数值 方向。。。。。中断间隔500ms  中断频率 2hzTIM_TimeBaseStructure.TIM_Period = period;//计数值10000 时间就过去1s  10时间过去1msTIM_TimeBaseStructure.TIM_Prescaler = Prescaler;//设置频率  分频值  84000 000hz/8400  10000hz 1s数10000个数TIM_TimeBaseStructure.TIM_ClockDivision = 0;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);/* 配置定时器3的中断参数 */NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);/* 设置中断条件 */TIM_ITConfig(TIM3,TIM_IT_Update , ENABLE);/*启动定时器计数*/TIM_Cmd(TIM3, ENABLE);}//定时器14 通道1 初始化
void TIM14_init(void)
{TIM_OCInitTypeDef  TIM_OCInitStructure;TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;GPIO_InitTypeDef GPIO_InitStructure;/* 定时器14的时钟使能*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14, ENABLE);/*定时器的基本配置,用于配置定时器的输出脉冲的频率为200Hz */TIM_TimeBaseStructure.TIM_Period = 10000/200-1;					//设置定时脉冲的频率TIM_TimeBaseStructure.TIM_Prescaler = 8400-1;						//第一次分频,简称为预分频TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;				//第二次分频,当前实现1分频,也就是不分频TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInit(TIM14, &TIM_TimeBaseStructure);/* 配置PF9 引脚为复用模式 */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;					//第9根引脚GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;				//设置复用模式GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;				//推挽模式,增加驱动电流GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;			//设置IO的速度为100MHz,频率越高性能越好,频率越低,功耗越低GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;			//不需要上拉电阻GPIO_Init(GPIOF, &GPIO_InitStructure);	GPIO_PinAFConfig(GPIOF, GPIO_PinSource9, GPIO_AF_TIM14);/* 让定时器14 PWM 的通道 1 工作在模式 1*///PWM 模式 1, 在递增模式下, 只要TIMx_CNT < TIMx_CCR1, 通道 1 便为有效状态(高电平), 否则为无效状态(低电平)。TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //允许输出TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 		//有效的时候, 输出高电平TIM_OC1Init(TIM14, &TIM_OCInitStructure);//TIMx_CCR1比较值的设置是由TIM_SetCompare1、TIM_SetCompare2、TIM_SetCompare3、TIM_SetCompare4来进行设置TIM_OC1PreloadConfig(TIM14, TIM_OCPreload_Enable);  //自动重载初值, 不断输出 PWM 脉冲TIM_ARRPreloadConfig(TIM14, ENABLE); 				//自动重载初值使能/*  使能定时器 14 工作 */TIM_Cmd(TIM14, ENABLE);
}

TIMER.h

#ifndef __TIMER_H_
#define __TIMER_H_#include "system.h"void TIM3_Init(uint32_t period,uint32_t Prescaler);
void TIM14_init(void);#endif 

DHT11.c

#include "DHT11.h"//PG9输出模式
void DHT11_Out()
{GPIO_InitTypeDef GPIO_InitStructure;/* 打开GPIOG的时钟  */RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);/* 选择引脚编号PF9 PF10,配置为输出模式 */GPIO_InitStructure.GPIO_Pin =GPIO_Pin_9;//9号引脚GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//输出模式GPIO_Init(GPIOG, &GPIO_InitStructure); PGout(9) = 1;
}//PG9输入模式
void DHT11_In()
{GPIO_InitTypeDef GPIO_InitStructure;/* 打开GPIOG的时钟  */RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);GPIO_InitStructure.GPIO_Pin =GPIO_Pin_9;//0号引脚GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;//输入模式GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//添加上拉电阻GPIO_Init(GPIOG, &GPIO_InitStructure); 
}//读取一个字节(8bit)的数据
uint8_t Read_DHT11_Byte()//1101 0000
{uint8_t byte = 0;//0000 0000 int i = 0;for(i = 0;i<8;i++){//等待低电平时隙结束while(PGin(9) == 0);delay_us(40);if(PGin(9) == 1){//当前数据就是1				       byte = byte|(1<<(7-i));//等待为1时70us的高电平结束while(PGin(9) == 1);}		}return byte;
}//获取一次温湿度数据
int Get_DHT11_Data(uint8_t *DHT11_Data)
{int i = 0;int t = 0;//1.32芯片发送开始信号//PG9输出模式DHT11_Out();PGout(9) = 0;delay_ms(20);PGout(9) = 1;delay_us(30);//2.32芯片等待回响信号---dht11发送响应信号//PG9输入模式DHT11_In();while(PGin(9) == 1)//等待响应信号到来{delay_us(1);t++;if(t >200){return 1;}						}t= 0;while(PGin(9) == 0)//等待响应信号低电平结束{delay_us(1);t++;if(t >200){return 2;}		}t = 0;while(PGin(9) == 1)//等待响应信号高电平结束{delay_us(1);t++;if(t >200){return 3;}		}//3.32芯片接收温湿度数据---dht11发送温湿度数据 (40bit)for(i = 0;i <5; i++){//获取8bit(一个字节)的数据DHT11_Data[i] = Read_DHT11_Byte();}//4.校验数据是否正常if(DHT11_Data[0]+DHT11_Data[1]+DHT11_Data[2]+DHT11_Data[3] == DHT11_Data[4]){return 0;}}

DHT11.h

#ifndef __DHT11_H_
#define __DHT11_H_#include "system.h"int Get_DHT11_Data(uint8_t *DHT11_Data);
void DHT11_Out();
void DHT11_In();
uint8_t Read_DHT11_Byte();#endif 

ADC.c

#include "ADC.h"void adc_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;ADC_InitTypeDef       ADC_InitStructure;ADC_CommonInitTypeDef ADC_CommonInitStructure;ADC_StructInit(&ADC_InitStructure);RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);//初始化PA5引脚为模拟模式GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;GPIO_Init(GPIOA, &GPIO_InitStructure);/* ADC常规的初始化*/ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;						//独立模式,只使用一个ADC硬件进行工作ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;						//ADC硬件的频率=84MHz/2=42MHzADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;			//取消DMA访问模式//ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;	//如果采用了多个ADC硬件对某个通道进行采样的,那么这个时间就是他们硬件工作的相隔时间ADC_CommonInit(&ADC_CommonInitStructure);										/* ADC1初始化*/ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;							//12bit精度,非常重要[*]ADC_InitStructure.ADC_ScanConvMode = DISABLE;									//因不需要多个ADC硬件对某个通道进行采样,则不需要连续扫描ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;								//连续转换,就是ADC硬件一直进行转换输出结果,否则只得到一个结果ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;		//禁止外部脉冲触发ADC硬件工作//ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;							//存储的结构使用右对齐的存储方式[*]//ADC_InitStructure.ADC_NbrOfConversion = 1;									//这个是在DMA模式生效的,转换的结果总数数量是放到内存当中	ADC_Init(ADC1, &ADC_InitStructure);/* ADC1的通道5的配置指定ADC1的通道5,它的优先级为最高1(范围:1~16),采样时间为3个ADC时钟周期=3*1/f=3*(1/42MHz)*/ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 1, ADC_SampleTime_3Cycles);/* 使能ADC工作 */ADC_Cmd(ADC1, ENABLE);}void adc3_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;ADC_InitTypeDef       ADC_InitStructure;ADC_CommonInitTypeDef ADC_CommonInitStructure;ADC_StructInit(&ADC_InitStructure);RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC3, ENABLE);//初始化PA5引脚为模拟模式GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;GPIO_Init(GPIOF, &GPIO_InitStructure);/* ADC常规的初始化*/ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;						//独立模式,只使用一个ADC硬件进行工作ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;						//ADC硬件的频率=84MHz/2=42MHzADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;			//取消DMA访问模式//ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;	//如果采用了多个ADC硬件对某个通道进行采样的,那么这个时间就是他们硬件工作的相隔时间ADC_CommonInit(&ADC_CommonInitStructure);										/* ADC1初始化*/ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;							//12bit精度,非常重要[*]ADC_InitStructure.ADC_ScanConvMode = DISABLE;									//因不需要多个ADC硬件对某个通道进行采样,则不需要连续扫描ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;								//连续转换,就是ADC硬件一直进行转换输出结果,否则只得到一个结果ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;		//禁止外部脉冲触发ADC硬件工作//ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;							//存储的结构使用右对齐的存储方式[*]//ADC_InitStructure.ADC_NbrOfConversion = 1;									//这个是在DMA模式生效的,转换的结果总数数量是放到内存当中	ADC_Init(ADC3, &ADC_InitStructure);/* ADC1的通道5的配置指定ADC1的通道5,它的优先级为最高1(范围:1~16),采样时间为3个ADC时钟周期=3*1/f=3*(1/42MHz)*/ADC_RegularChannelConfig(ADC3, ADC_Channel_5, 1, ADC_SampleTime_3Cycles);/* 使能ADC工作 */ADC_Cmd(ADC3, ENABLE);}

ADC.h

#ifndef __ADC_H_
#define __ADC_H_#include "system.h" //void ADC1_Init(void);void adc_init(void);void adc3_init(void);
#endif 

这篇关于基于STM32F407ZET6的环境温湿度监控系统(粤嵌GEC-M4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/814236

相关文章

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作