ArrayBlockingQueue与LinkedBlockingQueue底层原理

2024-03-16 02:28

本文主要是介绍ArrayBlockingQueue与LinkedBlockingQueue底层原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ArrayBlockingQueue与LinkedBlockingQueue底层原理

在线程池中,等待队列采用ArrayBlockingQueue或者LinkedBlockingDeque,那他们是怎么实现存放线程、阻塞、取出的呢?

一、ArrayBlockingQueue底层原理

1.1 简介

ArrayBlockingQueue是一个阻塞的队列,继承了AbstractBlockingQueue,间接的实现了Queue接口和Collection接口。 底层以数组的形式保存数据,所以它是基于数组的阻塞队列。ArrayBlockingQueue是有边界值的,在创建ArrayBlockingQueue时就要确定好该队列的大小,一旦创建,该队列大小不可更改。
内部的全局锁是使用的ReentrantLock

1.2 关系图谱

在这里插入图片描述

1.3 父类BlockingQueue的方法梳理
public interface BlockingQueue<E> extends Queue<E> {//将对象塞入队列,如果塞入成功返回true, 否则返回false。boolean add(E e);//将对象塞入到队列中,如果设置成功返回true, 否则返回falseboolean offer(E e);//将元素塞入到队列中,如果队列中已经满了,//则该方法会一直阻塞,直到队列中有多余的空间。void put(E e) throws InterruptedException;//将对象塞入队列并设置时间//如果塞入成功返回 true, 否则返回 false.boolean offer(E e, long timeout, TimeUnit unit)throws InterruptedException;//从队列中取对象,如果队列中没有对象,//线程会一直阻塞,直到队列中有对象,并且该方法取得了该对象。E take() throws InterruptedException;//在给定的时间里,从队列中获取对象,//时间到了直接调用普通的poll方法,为null则直接返回null。E poll(long timeout, TimeUnit unit)throws InterruptedException;//获取队列中剩余长度。int remainingCapacity();//从队列中移除指定的值。boolean remove(Object o);//判断队列中包含该对象。public boolean contains(Object o);//将队列中对象,全部移除,并加到传入集合中。int drainTo(Collection<? super E> c);//指定最多数量限制将队列中对,全部移除,并家到传入的集合中。int drainTo(Collection<? super E> c, int maxElements);
}
1.4 ArrayBlockingQueue源码解析
1.4.1 参数解释
	/** 队列中存放的值 */final Object[] items;/** 值的索引,这是取出位置的索引*/int takeIndex;/** 值的索引,这是插入位置的索引*/int putIndex;/** 队列中有多少个元素 */int count;/** Main lock guarding all access */final ReentrantLock lock;/** Condition for waiting takes 取出时枷锁 */private final Condition notEmpty;/** Condition for waiting puts 存入时枷锁*/private final Condition notFull;
1.4.2 构造方法
	/*** capacity 表示数组中最大容量,默认使用非公平锁*/public ArrayBlockingQueue(int capacity) {this(capacity, false);}/*** capacity 表示数组中最大容量* fair 为 false 时使用非公平锁,true 时使用公平锁*/public ArrayBlockingQueue(int capacity, boolean fair) {if (capacity <= 0)throw new IllegalArgumentException();this.items = new Object[capacity];lock = new ReentrantLock(fair);notEmpty = lock.newCondition();notFull =  lock.newCondition();}/*** capacity 表示数组中最大容量* fair 为 false 时使用非公平锁,true 时使用公平锁* c 初始化时,可以加入将我们有的集合加入该队列中*/public ArrayBlockingQueue(int capacity, boolean fair,Collection<? extends E> c) {this(capacity, fair);final ReentrantLock lock = this.lock;lock.lock(); // Lock only for visibility, not mutual exclusiontry {int i = 0;try {for (E e : c) {checkNotNull(e); //判空items[i++] = e;}} catch (ArrayIndexOutOfBoundsException ex) {throw new IllegalArgumentException();}count = i;putIndex = (i == capacity) ? 0 : i;} finally {lock.unlock();}}
1.4.3 存入数据的put方法
public void put(E e) throws InterruptedException {//判空checkNotNull(e);//显示锁final ReentrantLock lock = this.lock;//可中断锁lock.lockInterruptibly();try {//判断队列元素是否以及满了,满了就阻塞,如果队列满了await 是阻塞队列while (count == items.length)notFull.await();//队列未满,入队方法enqueue(e);} finally {//释放锁lock.unlock();}
}

数据入队方法

   private void enqueue(E x) {// assert lock.getHoldCount() == 1;// assert items[putIndex] == null;final Object[] items = this.items;items[putIndex] = x;//判断队列是否以及满了if (++putIndex == items.length)//满了就将下一个入队索引设置为 0 putIndex = 0;count++;//唤醒 其他阻塞的出队操作notEmpty.signal();}
1.4.4 取出数据的take方法
  public E take() throws InterruptedException {final ReentrantLock lock = this.lock;//可中断锁lock.lockInterruptibly();try {while (count == 0)//如果队列数量为0,则阻塞取数据的锁notEmpty.await();//队列长度不为0,开始取数据return dequeue();} finally {lock.unlock();}}

从队列取出数据

 private E dequeue() {//取得当前items对象final Object[] items = this.items;//获取数组最后一个数据@SuppressWarnings("unchecked")E x = (E) items[takeIndex];//取走后置空数组最后一个元素items[takeIndex] = null;if (++takeIndex == items.length)takeIndex = 0;count--;if (itrs != null)itrs.elementDequeued();//唤醒 存入数据的锁notFull.signal();return x;}

二、LinkedBlockingQueue底层原理

2.1 主要参数 解释
//队列中元素个数
private final AtomicInteger count = new AtomicInteger();
//头节点
transient Node<E> head;
//尾节点
private transient Node<E> last;
//出队锁
private final ReentrantLock takeLock = new ReentrantLock();
//如果队列为空,出队就会陷入等待
private final Condition notEmpty = takeLock.newCondition();
//入队锁
private final ReentrantLock putLock = new ReentrantLock();
//如果队列满了,入队就陷入等待
private final Condition notFull = putLock.newCondition();
2.2 存入元素put
public void put(E e) throws InterruptedException {if (e == null) throw new NullPointerException();int c = -1;Node<E> node = new Node<E>(e);//利用ReentrantLock独占锁来加锁,保证同时只有一个线程来putfinal ReentrantLock putLock = this.putLock;//利用AtomicInteger来表示queue中的元素个数final AtomicInteger count = this.count;//可打断的加锁putLock.lockInterruptibly();try {// private final Condition notFull = putLock.newCondition();//如果队列满了,就调用notFull。await()。notFull是putLock的条件变量,当调用notFull.await()会将putLock释放,阻塞在等待队列notFull上while (count.get() == capacity) {notFull.await();}//入队,不用获得takeLock,因为与出队操作不涉及共享变量//从入队代码可以看出head是一个哨兵节点,不存放任何实际数据//last = last.next = node;enqueue(node);//count++c = count.getAndIncrement();//如果队列未满,唤醒被阻塞的入队线程if (c + 1 < capacity)notFull.signal();} finally {putLock.unlock();}//如果c == 0,说明入队之前队列为空,唤醒出队的等待线程if (c == 0)signalNotEmpty();
}private void signalNotEmpty() {final ReentrantLock takeLock = this.takeLock;//获取出队锁takeLock.lock();try {//唤醒出队等待线程notEmpty.signal();} finally {takeLock.unlock();}
}

取出元素take

public E take() throws InterruptedException {E x;int c = -1;final AtomicInteger count = this.count;final ReentrantLock takeLock = this.takeLock;takeLock.lockInterruptibly();try {//如果队列为空,放弃takeLock,阻塞在等待队列notEmpty上while (count.get() == 0) {notEmpty.await();}//出队x = dequeue();//count--;c = count.getAndDecrement();//如果队列不为空,唤醒出队等待线程if (c > 1)notEmpty.signal();} finally {takeLock.unlock();}//如果队列不为空,唤醒入队等待线程if (c == capacity)signalNotFull();return x;
}private E dequeue() {//head是哨兵节点,不存放数据,实际的头节点是head.nextNode<E> h = head;//head的nextNode<E> first = h.next;h.next = h;//将head踢出head = first;//first的item才是第一个元素,head是哨兵节点E x = first.item;first.item = null;//从dequeue方法可以看出,queue中始终有一个哨兵head节点,不存储任何数据,queue中第一个元素是head.nextreturn x;
}private void signalNotFull() {final ReentrantLock putLock = this.putLock;putLock.lock();try {//唤醒入队等待线程notFull.signal();} finally {putLock.unlock();}
}

三、入队出队总结

3.1 入队
方法做法
put如果队列满了,就阻塞,当队列不满的时候,会再执行入队操作
offer如果队列满了,返回false。未满就返回true
add如果队列满了,抛出异常,未满就返回true
3.2 出队
方法做法
take如果队列为空,就阻塞,当队列不空的时候,会再执行出队操作
poll如果队列空了,返回null
peek返回队列首元素,不会出队

这篇关于ArrayBlockingQueue与LinkedBlockingQueue底层原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813998

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node