旋转门压缩算法(SDT)的Go实现

2024-03-15 18:10

本文主要是介绍旋转门压缩算法(SDT)的Go实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

在这里插入图片描述
实质上,是计算门轴到新数据点之间线段的斜率,门轴既是线段的零点。由于直线段的公式为:

x = kt+b //k为斜率,b为0点,t为时间轴,x为数据大小

上下门轴点的计算方法为:

ub=x0+ΔE //上门轴,x0为存储点的数值
db=x0-ΔE //下门轴,x0为存储点的数值

上下门斜率的计算方法为:

uk=(xt-ub)/Δt //上门斜率
dk=(xt-db)/Δt //下门斜率

在t0点,门关闭,上门斜率无线小,下门斜率无限大。随着时间轴的右伸,上门斜率逐渐变大(单向,只能变大),下门斜率逐渐变小(单向,只能变小)。当上门斜率大于等于下门斜率时,保存前一个数据点。
具体流程为:
在这里插入图片描述

算法的实现

package modelsimport ("time"
)//旋转门压缩结构体
type SdtDoor struct {DeltaE         float64   //门初始宽度LastHisV       float64   //上一次存储的数据值LastHisT       time.Time //上一次存储的数据时间戳LastRealV      float64   //上一次的实时数据值LastRealT      time.Time //上一次实时数据的时间戳MaxIntervalSec int64     //数据存储最大间隔秒数isinit         bool      //初始化状态closed         bool      //初始关门状态uk             float64   //上斜率dk             float64   //下斜率ub             float64   //上零点db             float64   //下零点
}//新建旋转门压缩实体
func NewSdtDoor(deltaE float64, maxsec int64) *SdtDoor {sdt := &SdtDoor{DeltaE: deltaE, MaxIntervalSec: maxsec, closed: true, isinit: true}return sdt
}//旋转门过滤器
func (sdt *SdtDoor) Filter(pointV float64, pointT time.Time) bool {if sdt.DeltaE == 0 { //门宽度为零return true //保存每一个数据}save := false   //过滤检查结果if sdt.isinit { //初始化状态sdt.isinit = falsesave = true} else {deltaT := float64(pointT.Sub(sdt.LastHisT).Milliseconds())//fmt.Printf("时间差:%fms\n", deltaT)if sdt.closed { //开门第一个点if deltaT > 0 {sdt.closed = falsesdt.uk = (pointV - sdt.ub) / deltaTsdt.dk = (pointV - sdt.db) / deltaT}} else {uk := (pointV - sdt.ub) / deltaTdk := (pointV - sdt.db) / deltaTif uk > sdt.uk { //上斜率只保存增大的sdt.uk = uk}if dk < sdt.dk { //下斜率只保存减小的sdt.dk = dk}if sdt.dk <= sdt.uk { //下斜率小于等于上斜率,触发保存save = true}if !save {if deltaT/1000.0 > float64(sdt.MaxIntervalSec) { //已经长时间没有触发保存save = true}}}}if save {sdt.LastHisV = sdt.LastRealVsdt.LastHisT = sdt.LastRealTsdt.ub = sdt.LastHisV + sdt.DeltaEsdt.db = sdt.LastHisV - sdt.DeltaEsdt.closed = true}sdt.LastRealV = pointVsdt.LastRealT = pointTreturn save
}

测试用例

func TestSdt(t *testing.T) {deltaE := 0.005 //门宽,即压缩精度datas := []struct {tstamp int64   //时间戳,UNIX秒sinv   float64 //正玄波值}{{1651800000, 0},{1651800001, 0.0998334166468282},{1651800002, 0.198669330795061},{1651800003, 0.29552020666134},{1651800004, 0.389418342308651},{1651800005, 0.479425538604203},{1651800006, 0.564642473395035},{1651800007, 0.644217687237691},{1651800008, 0.717356090899523},{1651800009, 0.783326909627483},{1651800010, 0.841470984807897},{1651800011, 0.891207360061435},{1651800012, 0.932039085967226},{1651800013, 0.963558185417193},{1651800014, 0.98544972998846},{1651800015, 0.997494986604054},{1651800016, 0.999573603041505},{1651800017, 0.991664810452469},{1651800018, 0.973847630878195},{1651800019, 0.946300087687414},{1651800020, 0.909297426825682},{1651800021, 0.863209366648874},{1651800022, 0.80849640381959},{1651800023, 0.74570521217672},{1651800024, 0.675463180551151},{1651800025, 0.598472144103956},{1651800026, 0.515501371821464},{1651800027, 0.427379880233829},{1651800028, 0.334988150155904},{1651800029, 0.239249329213982},{1651800030, 0.141120008059866},{1651800031, 0.0415806624332896},{1651800032, -0.058374143427581},{1651800033, -0.15774569414325},{1651800034, -0.255541102026833},{1651800035, -0.350783227689621},{1651800036, -0.442520443294854},{1651800037, -0.529836140908495},{1651800038, -0.61185789094272},{1651800039, -0.687766159183975},{1651800040, -0.756802495307929},{1651800041, -0.818277111064411},{1651800042, -0.871575772413589},{1651800043, -0.916165936749456},{1651800044, -0.951602073889517},{1651800045, -0.977530117665097},{1651800046, -0.993691003633465},{1651800047, -0.999923257564101},{1651800048, -0.99616460883584},{1651800049, -0.982452612624332},{1651800050, -0.958924274663138},{1651800051, -0.925814682327731},{1651800052, -0.883454655720152},{1651800053, -0.8322674422239},{1651800054, -0.772764487555985},{1651800055, -0.705540325570389},{1651800056, -0.631266637872319},{1651800057, -0.550685542597635},{1651800058, -0.464602179413754},{1651800059, -0.373876664830233},{1651800060, -0.279415498198922},{1651800061, -0.182162504272092},{1651800062, -0.0830894028174929},{1651800063, 0.0168139004843542},{1651800064, 0.116549204850497},{1651800065, 0.215119988087819},{1651800066, 0.311541363513382},{1651800067, 0.404849920616602},{1651800068, 0.494113351138612},{1651800069, 0.578439764388203},{1651800070, 0.656986598718792},{1651800071, 0.72896904012588},{1651800072, 0.793667863849156},{1651800073, 0.850436620628567},{1651800074, 0.898708095811629},{1651800075, 0.937999976774741},{1651800076, 0.967919672031488},{1651800077, 0.988168233877001},{1651800078, 0.998543345374605},{1651800079, 0.998941341839772},{1651800080, 0.989358246623381},{1651800081, 0.969889810845085},{1651800082, 0.940730556679771},{1651800083, 0.902171833756291},{1651800084, 0.854598908088278},{1651800085, 0.798487112623487},{1651800086, 0.73439709787411},{1651800087, 0.662969230082178},{1651800088, 0.584917192891757},{1651800089, 0.50102085645788},{1651800090, 0.412118485241752},{1651800091, 0.319098362349347},{1651800092, 0.222889914100242},{1651800093, 0.124454423507058},{1651800094, 0.0247754254533542},}sdt := NewSdtDoor(deltaE, 100)for i, dt := range datas {t := time.Unix(dt.tstamp, 0)save := sdt.Filter(dt.sinv, t)//fmt.Printf("%d uk=%f,dk=%f,diff=%f,save=%t\n", i, sdt.uk, sdt.dk, sdt.uk-sdt.dk, save)if save {if i == 0 {fmt.Println(dt)} else {if i != 1 { //第一个数前面已经输出过了,不再重复fmt.Println(datas[i-1])}}}}
}

测试结果

{1651800000 0}
{1651800001 0.0998334166468282}
{1651800005 0.479425538604203}
{1651800008 0.717356090899523}
{1651800011 0.891207360061435}
{1651800013 0.963558185417193}
{1651800015 0.997494986604054}
{1651800017 0.991664810452469}
{1651800019 0.946300087687414}
{1651800021 0.863209366648874}
{1651800024 0.675463180551151}
{1651800027 0.427379880233829}
{1651800032 -0.058374143427581}
{1651800036 -0.442520443294854}
{1651800039 -0.687766159183975}
{1651800042 -0.871575772413589}
{1651800044 -0.951602073889517}
{1651800046 -0.993691003633465}
{1651800048 -0.99616460883584}
{1651800050 -0.958924274663138}
{1651800052 -0.883454655720152}
{1651800055 -0.705540325570389}
{1651800058 -0.464602179413754}
{1651800062 -0.0830894028174929}
{1651800067 0.404849920616602}
{1651800070 0.656986598718792}
{1651800073 0.850436620628567}
{1651800075 0.937999976774741}
{1651800077 0.988168233877001}
{1651800079 0.998941341839772}
{1651800081 0.969889810845085}
{1651800083 0.902171833756291}
{1651800086 0.73439709787411}
{1651800089 0.50102085645788}
{1651800093 0.124454423507058}

对上述测试数据绘图

在这里插入图片描述

参考文献

SDT旋转门压缩算法MFC图形测试
数据压缩算法:旋转门算法(SDT)的C#实现

这篇关于旋转门压缩算法(SDT)的Go实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812821

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja