[python]bokeh学习总结——dashboard例子学习

2024-03-15 15:08

本文主要是介绍[python]bokeh学习总结——dashboard例子学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在bokeh官网关于Laying out Plots andWidgets的介绍中,引出一个关于boarddash的例子,在该例子中介绍了

  • bokeh.layouts模块中的layout
  • bokeh.models模块中的CustomJS、Slider、ColumnDataSource、WidgetBox

layout的作用是将不同的图像按照不同的样式来摆放。

CustomJS的作用是引入JavaScript代码。

Slider的作用是引入可以调节值大小的滑块,下图第二行左侧的四个滑块:Amplitude、Frequency、Phase、Offset。

为了将这四个滑块组件组合起来,使用WidgetBox可以将不同的组件组合起来。



源码为:

import numpy as npfrom bokeh.layouts import layout
from bokeh.models import CustomJS, Slider, ColumnDataSource, WidgetBox
from bokeh.plotting import figure, output_file, showoutput_file('dashboard.html')tools = 'pan'def bollinger():# Define Bollinger Bands.upperband = np.random.random_integers(100, 150, size=100)lowerband = upperband - 100x_data = np.arange(1, 101)# Bollinger shading glyph:band_x = np.append(x_data, x_data[::-1])band_y = np.append(lowerband, upperband[::-1])p = figure(x_axis_type='datetime', tools=tools)p.patch(band_x, band_y, color='#7570B3', fill_alpha=0.2)p.title.text = 'Bollinger Bands'p.title_location = 'left'p.title.align = 'left'p.plot_height = 600p.plot_width = 800p.grid.grid_line_alpha = 0.4return [p]def slider():x = np.linspace(0, 10, 100)y = np.sin(x)source = ColumnDataSource(data=dict(x=x, y=y))plot = figure(y_range=(-10, 10), tools='', toolbar_location=None,title="Sliders example")plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)callback = CustomJS(args=dict(source=source), code="""var data = source.data;var A = amp.value;var k = freq.value;var phi = phase.value;var B = offset.value;var x = data['x']var y = data['y']for (var i = 0; i < x.length; i++) {y[i] = B + A*Math.sin(k*x[i]+phi);}source.change.emit();""")amp_slider = Slider(start=0.1, end=10, value=1, step=.1, title="Amplitude", callback=callback, callback_policy='mouseup')callback.args["amp"] = amp_sliderfreq_slider = Slider(start=0.1, end=10, value=1, step=.1, title="Frequency", callback=callback)callback.args["freq"] = freq_sliderphase_slider = Slider(start=0, end=6.4, value=0, step=.1, title="Phase", callback=callback)callback.args["phase"] = phase_slideroffset_slider = Slider(start=-5, end=5, value=0, step=.1, title="Offset", callback=callback)callback.args["offset"] = offset_sliderwidgets = WidgetBox(amp_slider, freq_slider, phase_slider, offset_slider)return [widgets, plot]def linked_panning():N = 100x = np.linspace(0, 4 * np.pi, N)y1 = np.sin(x)y2 = np.cos(x)y3 = np.sin(x) + np.cos(x)s1 = figure(tools=tools)s1.circle(x, y1, color="navy", size=8, alpha=0.5)s2 = figure(tools=tools, x_range=s1.x_range, y_range=s1.y_range)s2.circle(x, y2, color="firebrick", size=8, alpha=0.5)s3 = figure(tools='pan, box_select', x_range=s1.x_range)s3.circle(x, y3, color="olive", size=8, alpha=0.5)return [s1, s2, s3]l = layout([bollinger(),slider(),linked_panning(),
], sizing_mode='stretch_both')show(l)


这篇关于[python]bokeh学习总结——dashboard例子学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812371

相关文章

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合