《Linux内核编程》第十三章:Linux对进程内存的二级页式管理

2024-03-15 14:38

本文主要是介绍《Linux内核编程》第十三章:Linux对进程内存的二级页式管理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文基于mstar801平台Linux2.6.35.11。

举例:

  当我们通过系统调用fork创建子进程时,将完全复制父进程的页表、同时将该页表置为写保护。

  之后,当父进程或子进程向地址空间写数据时,就会产生缺页异常、分配新的页、同时将两个页都置为可写。

  目前Linux版本支持4级分页虚拟地址映射,可满足64位CPU的寻址要求。不过,ARM9的MMU只支持两级页表地址转换,而且两级能满足32位CPU的存储管理需求,因此、ARM体系只使用linux四级中的两级分页。

  第一级:

  全局页目录表(PGD),系统运行时这个页表的首地址存放于ARM协处理器CP15的寄存器C2中;在进程调度切换时,操作系统不仅要切换SP和PC、也要切换这个C2,即每个进程都有自己的独立虚拟地址空间、也就有独立的全局页目录表PGD。

  第二、三、四级:

  程序中分别缩写为:

  PUD——页上级目录

  PMD——页中间目录

  PTE——页表(最末级)

  ARM存储体系支持的页的大小有几种——1M,64KB,4KB,1KB,支持的二级页表有两种:粗粒度和细粒度。在Linux中,ARM采用了粗粒度页表4K页的模式:其中一级索引地址有效位为11bit;二级索引地址有效位为9bit、页内偏移量为12bit。这就是一个32位虚拟地址的组成。

  4KB的页大小决定了虚拟地址的低12bit留做偏移地址用(因为2^12 = 4096 = 4KB),也决定了二级页描述符的低12位用作用户标志,4KB的页大小还决定了虚拟地址空间最多可以映射出(4GB/4KB = 1024 * 1024)个页。

  ARM体系下物理内存和虚拟内存按照4KB的大小进行分页,页索引表分为两级,其中全局一级页表PGD一个,表中含有2048个条目(一级索引地址有效位为11bit)、每个条目对应一个二级页表物理首地址;每个二级页表(PMD或PTE)中含有512个条目(二级索引有效位9bit)、每个条目对应一页物理首地址。可以理解为:2048 * 512 = 1024 * 1024个4KB,即4GB。

  即一个虚拟的32位地址可以表示如下:

  11bit + 9bit + 12bit分别表示:该进程PGD中的哪个PMD/PTE;某个PMD/PTE中的哪个页;以及某个页中的具体地址。

  下面看具体定义:

kernel2.6.35.11/arch/arm/include/asm/pgtable.h

#define PTRS_PER_PTE		512
#define PTRS_PER_PMD		1
#define PTRS_PER_PGD		2048
......
#define PMD_SHIFT		21
#define PGDIR_SHIFT		21

  简而言之,ARM在Linux下二级分页为:

  虚拟地址——>PGD转换——>PTE转换——>物理地址

一、看看Linux用户进程的页表分配

以下基于mstar801平台Linux2.6.35.11。

1.jb/bionic/libc/bionic/fork.c

#include <unistd.h>
#include "pthread_internal.h"
#include "bionic_pthread.h"
#include "cpuacct.h"
extern int  __fork(void);
int  fork(void)
{......int  ret;ret = __fork();......
}

2.jb/bionic/libc/arch-arm/syscalls/__fork.S

ENTRY(__fork).save   {r4, r7}stmfd   sp!, {r4, r7}ldr     r7, =__NR_forkswi     #0ldmfd   sp!, {r4, r7}movs    r0, r0bxpl    lrb       __set_syscall_errno
END(__fork)

============================================

3.系统调用表

kernel2.6.35.11/arch/arm/include/asm/unistd.h

#define __NR_fork                       (__NR_SYSCALL_BASE+  2)

4.实现

kernel2.6.35.11/arch/arm/kernel/entry-common.S

sys_fork_wrapper:add     r0, sp, #S_OFFb       sys_fork
ENDPROC(sys_fork_wrapper)

kernel2.6.35.11/arch/arm/kernel/sys_arm.c

asmlinkage int sys_fork(struct pt_regs *regs)
{
#ifdef CONFIG_MMUreturn do_fork(SIGCHLD, regs->ARM_sp, regs, 0, NULL, NULL);
#else/* can not support in nommu mode */return(-EINVAL);
#endif
}

5.do_fork函数

kernel2.6.35.11/kernel/fork.c

long do_fork(unsigned long clone_flags,unsigned long stack_start,struct pt_regs *regs,unsigned long stack_size,int __user *parent_tidptr,int __user *child_tidptr)
{......p = copy_process(clone_flags, stack_start, regs, stack_size,child_tidptr, NULL, trace);......
}
......
static struct task_struct *copy_process(unsigned long clone_flags,unsigned long stack_start,struct pt_regs *regs,unsigned long stack_size,int __user *child_tidptr,struct pid *pid,int trace)
{......if ((retval = copy_mm(clone_flags, p)))......
}
......
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
{struct mm_struct * mm, *oldmm;......mm = dup_mm(tsk);......
}
......
struct mm_struct *dup_mm(struct task_struct *tsk)
{struct mm_struct *mm, *oldmm = current->mm;......if (!mm_init(mm, tsk))......
}
......
static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
{......if (likely(!mm_alloc_pgd(mm))) {......
}
......
static inline int mm_alloc_pgd(struct mm_struct * mm)
{mm->pgd = pgd_alloc(mm);if (unlikely(!mm->pgd))return -ENOMEM;return 0;
}

6.看看pgd分配函数,清楚Linux进程为什么共享内核地址空间:

kernel2.6.35.11/arch/arm/mm/pgd.c

pgd_t *pgd_alloc(struct mm_struct *mm)
{......new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);  //新分配一级页表......memset(new_pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));  //0~3GB页表初始化为0......init_pgd = pgd_offset_k(0);memcpy(new_pgd + USER_PTRS_PER_PGD, init_pgd + USER_PTRS_PER_PGD,(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));  //3~4GB页表来源与kernel初始化时的页表,即共享内核页表......new_pud = pud_alloc(mm, new_pgd, 0);......new_pmd = pmd_alloc(mm, new_pud, 0);......new_pte = pte_alloc_map(mm, NULL, new_pmd, 0);......return new_pgd;......
}

kernel2.6.35.11/arch/arm/include/asm/pgtable.h

/* to find an entry in a page-table-directory */
#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)

二、看看Linux内核页表的建立

其中,init_mm是linux内核启动时分配的内核页表:

kernel2.6.35.11/init/main.c

asmlinkage void __init start_kernel(void)
{......setup_arch(&command_line);......
}

kernel5.6.35.11/arch/arm/kernel/setup.c

void __init setup_arch(char **cmdline_p)
{......init_mm.start_code = (unsigned long) _text;init_mm.end_code   = (unsigned long) _etext;init_mm.end_data   = (unsigned long) _edata;init_mm.brk	   = (unsigned long) _end;......
}


这篇关于《Linux内核编程》第十三章:Linux对进程内存的二级页式管理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812299

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Linux编译器--gcc/g++使用方式

《Linux编译器--gcc/g++使用方式》文章主要介绍了C/C++程序的编译过程,包括预编译、编译、汇编和链接四个阶段,并详细解释了每个阶段的作用和具体操作,同时,还介绍了调试和发布版本的概念... 目录一、预编译指令1.1预处理功能1.2指令1.3问题扩展二、编译(生成汇编)三、汇编(生成二进制机器语