使用timm库的一些知识点

2024-03-14 22:04
文章标签 知识点 使用 timm

本文主要是介绍使用timm库的一些知识点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。
在这里插入图片描述

使用timm库创建模型时,如何确定模型的名字

使用timm.list_models方法,找到timm支持的模型

import timmif __name__ == '__main__':all_pretrained_models_available = timm.list_models(pretrained=True)print(all_pretrained_models_available)for i in all_pretrained_models_available:print(i)

运行结果:
很多,这里只列出一部分啊!

resnet152
resnet152d
resnet200d
resnetblur50
resnetrs50
resnetrs101
resnetrs152
resnetrs200
resnetrs270
resnetrs350
resnetrs420
resnetv2_50
resnetv2_50x1_bit_distilled
resnetv2_50x1_bitm
resnetv2_50x1_bitm_in21k
resnetv2_50x3_bitm
resnetv2_50x3_bitm_in21k
resnetv2_101
resnetv2_101x1_bitm
resnetv2_101x1_bitm_in21k
resnetv2_101x3_bitm
resnetv2_101x3_bitm_in21k
resnetv2_152x2_bit_teacher
resnetv2_152x2_bit_teacher_384
resnetv2_152x2_bitm
resnetv2_152x2_bitm_in21k
resnetv2_152x4_bitm
resnetv2_152x4_bitm_in21k
resnext26ts

创建模型

执行代码

self.model = timm.create_model('resnetv2_50', pretrained, num_classes=12, global_pool="avg")

加载预训练权重

timm模型加载预训练权重,均改为从huggingface自动下载。由于众所周知的原因,我们不能下载。我们可以选择加载其他版本的预训练权重。代码:

model_path = '/Users/admin/Downloads/pytorch_model.bin'  # 替换为你的pytorch_model.bin文件路径# 加载模型权重
state_dict = torch.load(model_path, map_location=torch.device('cpu'))# 创建模型实例并加载权重
model = timm.create_model("eva_giant_patch14_336.clip_ft_in1k", pretrained=False)
model.load_state_dict(state_dict)# 修改输出类别数
model.reset_classifier(num_classes)  

特征提取

使用timm库进行特征提取是一个常见的任务,尤其是在处理图像数据时。timm(Torch Image Models)是一个基于PyTorch的库,它包含了一系列预训练的深度学习模型,这些模型可以很方便地用于特征提取、迁移学习等任务。

以下是一个使用timm进行特征提取的基本示例:

首先,确保你已经安装了timm库:

pip install timm

然后,你可以使用以下Python代码进行特征提取:

import torch
from timm import create_model, list_models
from torchvision import transforms
from PIL import Image# 选择一个预训练模型
model_name = 'resnet50'
pretrained_model = create_model(model_name, pretrained=True)# 切换到评估模式,关闭dropout和batch normalization层
pretrained_model.eval()# 定义预处理变换
transform = transforms.Compose([transforms.Resize(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])# 加载图像
image_path = 'path_to_your_image.jpg'
image = Image.open(image_path).convert('RGB')# 应用预处理变换
image_tensor = transform(image).unsqueeze(0)  # 添加batch维度# 如果有GPU,将图像和数据模型转移到GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_tensor = image_tensor.to(device)
pretrained_model = pretrained_model.to(device)# 提取特征
with torch.no_grad():  # 不需要计算梯度,节省内存和计算资源features = pretrained_model.forward_features(image_tensor)  # 获取特征# 将特征转移到CPU(如果需要)并展平
features = features.cpu().numpy().flatten()print(features)

在这个例子中,我们首先创建了一个预训练的ResNet-50模型。然后,我们将模型设置为评估模式,并定义了一个预处理变换,该变换将图像缩放到256x256,中心裁剪到224x224,转换为张量,并应用归一化。

接下来,我们加载了一张图像,并应用预处理变换。然后,我们检查是否有可用的GPU,并将图像张量和模型转移到相应的设备上。

最后,我们使用forward_features方法(这是timm库特有的,用于直接获取模型的卷积层输出,而不包括全连接层)来提取图像的特征。提取的特征被转移到CPU上,并展平为一个一维数组。

注意:不同的模型可能有不同的方法来获取特征。例如,一些模型可能没有forward_features方法,而是需要你手动选择特定的层来获取特征。在这种情况下,你需要查阅该模型的文档或源代码来了解如何正确提取特征。

这篇关于使用timm库的一些知识点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809851

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服