洛谷P2572 [SCOI2010] 序列操作

2024-03-14 18:36

本文主要是介绍洛谷P2572 [SCOI2010] 序列操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

lxhgww 最近收到了一个 01 序列,序列里面包含了 n 个数,下标从 0 开始。这些数要么是 0,要么是 1,现在对于这个序列有五种变换操作和询问操作:

  • 0 l r 把 [l,r] 区间内的所有数全变成 0;
  • 1 l r 把 [l,r] 区间内的所有数全变成 1;
  • 2 l r 把 [l,r] 区间内的所有数全部取反,也就是说把所有的 0 变成 1,把所有的 1 变成 0;
  • 3 l r 询问 [l,r] 区间内总共有多少个 1;
  • 4 l r 询问 [l,r] 区间内最多有多少个连续的 1。

对于每一种询问操作,lxhgww 都需要给出回答,聪明的程序员们,你们能帮助他吗?

输入格式

第一行两个正整数 n,m,表示序列长度与操作个数。
第二行包括 n 个数,表示序列的初始状态。
接下来 m 行,每行三个整数,表示一次操作。

输出格式

对于每一个询问操作,输出一行一个数,表示其对应的答案。

输入输出样例

输入 #1

10 10
0 0 0 1 1 0 1 0 1 1
1 0 2
3 0 5
2 2 2
4 0 4
0 3 6
2 3 7
4 2 8
1 0 5
0 5 6
3 3 9

输出 #1

5
2
6
5

说明/提示

【数据范围】
对于 30% 的数据,1≤n,m≤1000;
对于100% 的数据,1≤n,m≤105。

思路

一看就是线段树

将操作简化:

操作0,1:区间改值,同时优先级最大,用正常的lazy标记下传即可,下传时将区间取反标记清空。

操作2:区间取反,下传时若下区间有操作0,1的标记,将其取反,否则将已有的区间取反标记取反。

操作3:区间求和,对线段树每一个节点维护一个sum值

操作4:区间最长连续“1”,维护方法与维护最大字段和类似:分别记录

max1l,max1r,max1n,max0l,max0r,max0n;

表示必然包含左端点的最长连续“1”数目,必然包含右端点的最长连续“1”数目,最长连续“1”数目,必然包含左端点的最长连续“0”数目,必然包含右端点的最长连续“0”数目,最长连续“0”数目。

#include<bits/stdc++.h>
using namespace std;
struct Tree{int l,r,lazy,sum,max1l,max1n,max1r,len,lazyq;int max0l,max0n,max0r;
}tree[4000010]; 
int n,m;
int a[1000010];
inline void pushup(Tree &rt,Tree rl,Tree rr)
{rt.max1n=max(rl.max1n,max(rr.max1n,rl.max1r+rr.max1l));rt.max0n=max(rl.max0n,max(rr.max0n,rl.max0r+rr.max0l));if(rl.sum==rl.len) rt.max1l=rl.sum+rr.max1l;else rt.max1l=rl.max1l;if(rr.sum==rr.len) rt.max1r=rr.sum+rl.max1r;else rt.max1r=rr.max1r;if(!rl.sum) rt.max0l=rl.len+rr.max0l;else rt.max0l=rl.max0l;if(!rr.sum) rt.max0r=rr.len+rl.max0r;else rt.max0r=rr.max0r;rt.sum=rl.sum+rr.sum;return;
}
inline void build(int rt,int l,int r)
{if(l==r){tree[rt]=(Tree){l,r,-1,a[l],a[l],a[l],a[l],1,0,!a[l],!a[l],!a[l]};return;}tree[rt]=(Tree){l,r};int mid=(l+r)>>1;build(rt<<1,l,mid);build(rt<<1|1,mid+1,r);tree[rt].lazy=-1;tree[rt].len=tree[rt<<1].len+tree[rt<<1|1].len;pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);
}
inline void downlazy(int rt)
{if(tree[rt].lazy==-1&&tree[rt].lazyq==0) return;int rl=rt<<1,rr=rt<<1|1;if(tree[rt].lazy!=-1){tree[rl].lazyq=tree[rr].lazyq=0;tree[rl].lazy=tree[rr].lazy=tree[rt].lazy;tree[rl].sum=tree[rl].max1n=tree[rl].max1l=tree[rl].max1r=tree[rl].len*tree[rt].lazy;tree[rr].sum=tree[rr].max1n=tree[rr].max1l=tree[rr].max1r=tree[rr].len*tree[rt].lazy;tree[rl].max0n=tree[rl].max0l=tree[rl].max0r=tree[rl].len*(!tree[rt].lazy);tree[rr].max0n=tree[rr].max0l=tree[rr].max0r=tree[rr].len*(!tree[rt].lazy);tree[rt].lazy=-1;}if(tree[rt].lazyq){if(tree[rl].lazy!=-1) tree[rl].lazy^=1;else tree[rl].lazyq^=1;if(tree[rr].lazy!=-1) tree[rr].lazy^=1;else tree[rr].lazyq^=1;tree[rl].sum=tree[rl].len-tree[rl].sum;tree[rr].sum=tree[rr].len-tree[rr].sum;swap(tree[rl].max0l,tree[rl].max1l);swap(tree[rl].max0n,tree[rl].max1n);swap(tree[rl].max0r,tree[rl].max1r);swap(tree[rr].max0l,tree[rr].max1l);swap(tree[rr].max0n,tree[rr].max1n);swap(tree[rr].max0r,tree[rr].max1r);tree[rt].lazyq=0;}
}
inline void change(int rt,int L,int R,int d)
{if(tree[rt].l>=L&&tree[rt].r<=R){tree[rt].lazy=d;tree[rt].lazyq=0;tree[rt].sum=tree[rt].max1n=tree[rt].max1l=tree[rt].max1r=tree[rt].len*tree[rt].lazy;tree[rt].max0n=tree[rt].max0l=tree[rt].max0r=tree[rt].len*(!tree[rt].lazy);return;}downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1;if(L<=mid) change(rt<<1,L,R,d);if(R>mid) change(rt<<1|1,L,R,d);pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);
}
inline void update(int rt,int L,int R)
{if(tree[rt].l>=L&&tree[rt].r<=R){if(tree[rt].lazy!=-1) tree[rt].lazy^=1;else tree[rt].lazyq^=1;tree[rt].sum=tree[rt].len-tree[rt].sum;swap(tree[rt].max0l,tree[rt].max1l);swap(tree[rt].max0n,tree[rt].max1n);swap(tree[rt].max0r,tree[rt].max1r);return;}downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1;if(L<=mid) update(rt<<1,L,R);if(R>mid) update(rt<<1|1,L,R);pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);
}
inline int qerry_1(int rt,int L,int R)
{if(tree[rt].l>=L&&tree[rt].r<=R) return tree[rt].sum;downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1,ans=0;if(L<=mid) ans+=qerry_1(rt<<1,L,R);if(R>mid) ans+=qerry_1(rt<<1|1,L,R);pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);return ans;
}
inline Tree qerry_2(int rt,int L,int R)
{if(tree[rt].l>=L&&tree[rt].r<=R) return tree[rt];downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1;Tree ans,l,r;ans=l=r=(Tree){0,0,-1,0,0,0,0,0,0,0,0};if(L<=mid) l=qerry_2(rt<<1,L,R);if(R>mid) r=qerry_2(rt<<1|1,L,R);pushup(ans,l,r);return ans;
}
int main()
{cin>>n>>m;for(int i=1;i<=n;i++) cin>>a[i];build(1,1,n);for(int i=1;i<=m;i++){int op,l,r;scanf("%d%d%d",&op,&l,&r);l++,r++;switch(op){case 0:case 1:{change(1,l,r,op);break;}case 2:{update(1,l,r);break;}case 3:{printf("%d\n",qerry_1(1,l,r));break;}case 4:{Tree ans=qerry_2(1,l,r);printf("%d\n",ans.max1n);break;}}	} return 0;
}

这篇关于洛谷P2572 [SCOI2010] 序列操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809339

相关文章

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员