spark sql 从antlr的ast到Unresolved Logical Plan

2024-03-13 17:50

本文主要是介绍spark sql 从antlr的ast到Unresolved Logical Plan,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

spark sql 从antlr的ast到Unresolved Logical Plan
前提
  • 了解spark sql流程
  • 了解antlr,能看懂antlr的语法文件(*.g4),了解antlr访问者模式,安装idea antlr插件
准备

生成antlr语法树

  • 在idea中打开SqlBase.g4,这个是antlr规定的spark sql的sql语法.如果我们想看看某个关键字在spark sql 中怎么用,如果熟悉antlr的话,也可以到这个文件中查看.
  • 编写sql
/* 在插件中所有字母必需大写
fragment LETTER: [A-Z];*/
SELECT NAME,AGE FROM USER

image
image
spark 中编写相应的代码,方便调试

import org.apache.spark.sql.SparkSessionobject TestSql {def main(args: Array[String]): Unit = {val spark: SparkSession = SparkSession.builder().config("spark.sql.shuffle.partitions", 5).master("local[*]").appName("us").getOrCreate()import spark._sql("SELECT NAME,AGE FROM USER").show()}}
  /** Creates LogicalPlan for a given SQL string. *///追踪代码,在这里把 sql转成了LogicalPlanoverride def parsePlan(sqlText: String): LogicalPlan = parse(sqlText) { parser =>astBuilder.visitSingleStatement(parser.singleStatement()) match {case plan: LogicalPlan => plancase _ =>val position = Origin(None, None)throw new ParseException(Option(sqlText), "Unsupported SQL statement", position, position)}}
  • 打开类
class AstBuilder(conf: SQLConf) extends SqlBaseBaseVisitor[AnyRef] with Logging

这个类extends 了antlr的SqlBaseBaseVisitor,SqlBaseBaseVisitor对所有的方法都有一个默认的实现,即访问子节点.所以AstBuilder并不需要重新实现全部的方法,只用实现关心的方法.

public class SqlBaseBaseVisitor<T> extends AbstractParseTreeVisitor<T> implements SqlBaseVisitor<T> {/*** {@inheritDoc}** <p>The default implementation returns the result of calling* {@link #visitChildren} on {@code ctx}.</p>*/@Override public T visitSingleStatement(SqlBaseParser.SingleStatementContext ctx) { return visitChildren(ctx); }
  • 开始分析
    结合上图生成的ast,第一个访问的节点是 singleStatement,ast中的
  /*第1步 singleStatement  语法树的起点*/override def visitSingleStatement(ctx: SingleStatementContext): LogicalPlan = withOrigin(ctx) {//visit 直接去访问子节点,由图可知下一个是statement:statementDefault(看冒号扣面的,给每个分支定义一个名称)visit(ctx.statement).asInstanceOf[LogicalPlan]}

visitStatementDefault没有实现,直接访问下一个节点

  /*** Create a top-level plan with Common Table Expressions.* query* : ctes? queryNoWith* 第2步* ;*/override def visitQuery(ctx: QueryContext): LogicalPlan = withOrigin(ctx) {//访问 queryNoWith节点val query = plan(ctx.queryNoWith)/*这个ctes不知道是干什么的,这条sql没有这个部分,我们可以查看sqlBase.g4关于ctes的定义ctes: WITH namedQuery (',' namedQuery)*;*/// Apply CTEsquery.optional(ctx.ctes) {val ctes = ctx.ctes.namedQuery.asScala.map { nCtx =>val namedQuery = visitNamedQuery(nCtx)(namedQuery.alias, namedQuery)}// Check for duplicate names.checkDuplicateKeys(ctes, ctx)With(query, ctes.toMap)}}

以此类推,我们就可以自己去追踪如何根据ast生成LogicalPlan

  /*** Create a logical plan for a regular (single-insert) query.* 创建一个logical计划,为一个常规的(简单查询)* 第3步*/override def visitSingleInsertQuery(ctx: SingleInsertQueryContext): LogicalPlan = withOrigin(ctx) {//访问queryTermDefault 没有实现,访问子节点plan(ctx.queryTerm).// Add organization statements.// 以with开头的方法添加信息到Logical planoptionalMap(ctx.queryOrganization)(withQueryResultClauses).// Add insert.optionalMap(ctx.insertInto())(withInsertInto)}/*** Create a logical plan using a query specification.* 用一个查询规范 创建一个 logical plan* 第4步  SELECT xxx from xxx where xxx having xxx  剔除了 sort by /order by /limit 等*/override def visitQuerySpecification(ctx: QuerySpecificationContext): LogicalPlan = withOrigin(ctx) {val from = OneRowRelation.optional(ctx.fromClause) {visitFromClause(ctx.fromClause)}withQuerySpecification(ctx, from)}

在了解了LogicalPlan,expression表达式后,再来继续.

这篇关于spark sql 从antlr的ast到Unresolved Logical Plan的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/805683

相关文章

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例