spark sql 从antlr的ast到Unresolved Logical Plan

2024-03-13 17:50

本文主要是介绍spark sql 从antlr的ast到Unresolved Logical Plan,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

spark sql 从antlr的ast到Unresolved Logical Plan
前提
  • 了解spark sql流程
  • 了解antlr,能看懂antlr的语法文件(*.g4),了解antlr访问者模式,安装idea antlr插件
准备

生成antlr语法树

  • 在idea中打开SqlBase.g4,这个是antlr规定的spark sql的sql语法.如果我们想看看某个关键字在spark sql 中怎么用,如果熟悉antlr的话,也可以到这个文件中查看.
  • 编写sql
/* 在插件中所有字母必需大写
fragment LETTER: [A-Z];*/
SELECT NAME,AGE FROM USER

image
image
spark 中编写相应的代码,方便调试

import org.apache.spark.sql.SparkSessionobject TestSql {def main(args: Array[String]): Unit = {val spark: SparkSession = SparkSession.builder().config("spark.sql.shuffle.partitions", 5).master("local[*]").appName("us").getOrCreate()import spark._sql("SELECT NAME,AGE FROM USER").show()}}
  /** Creates LogicalPlan for a given SQL string. *///追踪代码,在这里把 sql转成了LogicalPlanoverride def parsePlan(sqlText: String): LogicalPlan = parse(sqlText) { parser =>astBuilder.visitSingleStatement(parser.singleStatement()) match {case plan: LogicalPlan => plancase _ =>val position = Origin(None, None)throw new ParseException(Option(sqlText), "Unsupported SQL statement", position, position)}}
  • 打开类
class AstBuilder(conf: SQLConf) extends SqlBaseBaseVisitor[AnyRef] with Logging

这个类extends 了antlr的SqlBaseBaseVisitor,SqlBaseBaseVisitor对所有的方法都有一个默认的实现,即访问子节点.所以AstBuilder并不需要重新实现全部的方法,只用实现关心的方法.

public class SqlBaseBaseVisitor<T> extends AbstractParseTreeVisitor<T> implements SqlBaseVisitor<T> {/*** {@inheritDoc}** <p>The default implementation returns the result of calling* {@link #visitChildren} on {@code ctx}.</p>*/@Override public T visitSingleStatement(SqlBaseParser.SingleStatementContext ctx) { return visitChildren(ctx); }
  • 开始分析
    结合上图生成的ast,第一个访问的节点是 singleStatement,ast中的
  /*第1步 singleStatement  语法树的起点*/override def visitSingleStatement(ctx: SingleStatementContext): LogicalPlan = withOrigin(ctx) {//visit 直接去访问子节点,由图可知下一个是statement:statementDefault(看冒号扣面的,给每个分支定义一个名称)visit(ctx.statement).asInstanceOf[LogicalPlan]}

visitStatementDefault没有实现,直接访问下一个节点

  /*** Create a top-level plan with Common Table Expressions.* query* : ctes? queryNoWith* 第2步* ;*/override def visitQuery(ctx: QueryContext): LogicalPlan = withOrigin(ctx) {//访问 queryNoWith节点val query = plan(ctx.queryNoWith)/*这个ctes不知道是干什么的,这条sql没有这个部分,我们可以查看sqlBase.g4关于ctes的定义ctes: WITH namedQuery (',' namedQuery)*;*/// Apply CTEsquery.optional(ctx.ctes) {val ctes = ctx.ctes.namedQuery.asScala.map { nCtx =>val namedQuery = visitNamedQuery(nCtx)(namedQuery.alias, namedQuery)}// Check for duplicate names.checkDuplicateKeys(ctes, ctx)With(query, ctes.toMap)}}

以此类推,我们就可以自己去追踪如何根据ast生成LogicalPlan

  /*** Create a logical plan for a regular (single-insert) query.* 创建一个logical计划,为一个常规的(简单查询)* 第3步*/override def visitSingleInsertQuery(ctx: SingleInsertQueryContext): LogicalPlan = withOrigin(ctx) {//访问queryTermDefault 没有实现,访问子节点plan(ctx.queryTerm).// Add organization statements.// 以with开头的方法添加信息到Logical planoptionalMap(ctx.queryOrganization)(withQueryResultClauses).// Add insert.optionalMap(ctx.insertInto())(withInsertInto)}/*** Create a logical plan using a query specification.* 用一个查询规范 创建一个 logical plan* 第4步  SELECT xxx from xxx where xxx having xxx  剔除了 sort by /order by /limit 等*/override def visitQuerySpecification(ctx: QuerySpecificationContext): LogicalPlan = withOrigin(ctx) {val from = OneRowRelation.optional(ctx.fromClause) {visitFromClause(ctx.fromClause)}withQuerySpecification(ctx, from)}

在了解了LogicalPlan,expression表达式后,再来继续.

这篇关于spark sql 从antlr的ast到Unresolved Logical Plan的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/805683

相关文章

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

MySQL错误代码2058和2059的解决办法

《MySQL错误代码2058和2059的解决办法》:本文主要介绍MySQL错误代码2058和2059的解决办法,2058和2059的错误码核心都是你用的客户端工具和mysql版本的密码插件不匹配,... 目录1. 前置理解2.报错现象3.解决办法(敲重点!!!)1. php前置理解2058和2059的错误

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

mysql数据库重置表主键id的实现

《mysql数据库重置表主键id的实现》在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,本文主要介绍了mysql数据库重置表主键id的实现,具有一定的参考价值,感兴趣的可以了... 目录关键语法演示案例在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,当我们