[linux][内存] 实例观察 linux 内存懒加载 和 写时拷贝

2024-03-12 12:28

本文主要是介绍[linux][内存] 实例观察 linux 内存懒加载 和 写时拷贝,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 内存懒加载

linux 中写应用程序的时候,使用 malloc() 申请的内存,比如使用  malloc() 申请了 1MB 的内存,系统是立即分配了内存吗 ?

不是立即分配,而是懒加载。linux 中用户态的内存是懒加载的,不是申请之后就立即分配,而是在第一次访问的时候才会分配。

懒加载的优点:

(1)避免内存资源浪费,如果应用申请了内存但是一直没有使用,如果内存是立即分配的话就会导致很多内存资源浪费。懒加载类似于单例设计模式中的懒汉式。

(2)减少初始化开销,提升应用启动速度。在进程启动的时候,不需要立即给所有的虚拟内存分配物理内存,这样可以减少初始化开销。

懒加载缺点:

如果应用访问内存的时候,内存有已经加载的,有没加载的,那么两种情况下访问内存所消耗的时间就是不确定的。懒加载影响程序运行的确定性。

2 /proc/self/pagemap

通过 /proc/self/pagemap 可以将虚拟地址转化为物理地址。这个文件只能进程本身才有权限访问。关于 /proc/self/pagemap 的介绍在如下文件中。

Documentation/admin-guide/mm/pagemap.rst

从介绍中可以看出来,文件中的每一项是一个 8 字节的数据。bit63 用来表示虚拟内存有没有分配物理内存,bit 0-54 用来表示物理内存页号。

 * ``/proc/pid/pagemap``.  This file lets a userspace process find out which

   physical frame each virtual page is mapped to.  It contains one 64-bit

   value for each virtual page, containing the following data (from

   ``fs/proc/task_mmu.c``, above pagemap_read):

    * Bits 0-54  page frame number (PFN) if present

    * Bits 0-4   swap type if swapped

    * Bits 5-54  swap offset if swapped

    * Bit  55    pte is soft-dirty (see

      :ref:`Documentation/admin-guide/mm/soft-dirty.rst <soft_dirty>`)

    * Bit  56    page exclusively mapped (since 4.2)

    * Bits 57-60 zero

    * Bit  61    page is file-page or shared-anon (since 3.5)

    * Bit  62    page swapped

    * Bit  63    page present

如下代码,可以获取虚拟地址对应的物理地址。

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdint.h>unsigned long GetPhysicalAddrOfVirtual(unsigned long virtual_addr) {int page_size = getpagesize(); // 页大小,一般是 4KBunsigned long virtual_page_index = virtual_addr / page_size; // 虚拟地址页编号unsigned long page_offset = virtual_addr % page_size; // 虚拟地址页内偏移unsigned long virtual_offset = virtual_page_index * sizeof(uint64_t); // 虚拟地址在 pagemap 中对应的表项uint64_t entry = 0;int fd = open("/proc/self/pagemap", O_RDONLY); // 打开文件if (fd < 0) {perror("open /proc/self/pagemap failed: ");return 0;}if (lseek(fd, virtual_offset, SEEK_SET) < 0) { // 定位到虚拟地址对应的页表项perror("seek error: ");return 0;}if (read(fd, &entry, sizeof(uint64_t)) != sizeof(uint64_t)) {perror("read entry error: ");return 0;}if ((((uint64_t)1 << 63) & entry) == 0){ // 使用 bit 63 来判断物理页是否存在printf("page is not present\n");return 0;}uint64_t phy_page_index = (((uint64_t)1 << 55) - 1) & entry; // 获取物理页编号unsigned long physical_addr = (phy_page_index * page_size) + page_offset; // 获取物理地址return physical_addr;
}int main() {char *p = (char *)malloc(4096);p[0] = 1;p[2000] = 1;printf("virtual addr = %p, physical addr = %p\n", p, (void *)GetPhysicalAddrOfVirtual((unsigned long)(void *)p));return 0;
}

3 内存懒加载代码

 如下是示例代码,代码中的变量有两个,一个是申请内存的方式,包括 malloc(),mmap() 匿名映射,mmap() 基于 fd 映射,这 3 中申请内存的方式;一个是内存访问的方式,一个是读,一个是写。

从实验结果可以得出如下两点:

(1)malloc,mmap 匿名映射,mmap fd 映射,这 3 种方式申请的内存都是懒加载方式,因为在访问之前获取物理是否存在,是不存在的。

(2)内存读和写两种操作都会使得给虚拟内存分配物理页,因为内存访问之后获取物理页是否存在,是存在的。

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdint.h>
#include <sys/mman.h>int PhysicalPageExist(unsigned long virtual_addr)
{int page_size = getpagesize();unsigned long virtual_page_index = virtual_addr / page_size;unsigned long page_offset = virtual_addr % page_size;unsigned long virtual_offset = virtual_page_index * sizeof(uint64_t);uint64_t entry = 0;int fd = open("/proc/self/pagemap", O_RDONLY);if (fd < 0) {perror("open /proc/self/pagemap failed: ");return 0;}if (lseek(fd, virtual_offset, SEEK_SET) < 0) {perror("seek error: ");return 0;}if (read(fd, &entry, sizeof(uint64_t)) != sizeof(uint64_t)) {perror("read entry error: ");return 0;}if ((((uint64_t)1 << 63) & entry) == 0){printf("page is not present\n");return 0;}return 1;
}char *MmapFd() {const char *file_name = "mfile";int fd = open(file_name, O_RDWR | O_CREAT);if (fd == -1) { perror("open");return NULL;}ftruncate(fd, 1024 * 1024);void *p = mmap(NULL, 1024 * 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);if (p == MAP_FAILED) {perror("mmap");close(fd);return NULL;;}close(fd);return (char *)p;
}char *MmapAnon() {size_t size = 1024 * 1024;void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0);if (p == MAP_FAILED) {perror("mmap");return NULL;}return (char *)p;
}char *Malloc() {return (char *)malloc(1024 * 1024);
}int main() {// char *p = Malloc();// char *p = MmapAnon();char *p = MmapFd();if (p == NULL) {printf("malloc memory failed");return 0;}for (int i = 0; i < 256; i++) {printf("before write, memory %p loaded %d\n", p + i * 4096, PhysicalPageExist((unsigned long)(void *)(p + i * 4096)));}for (int i = 0; i < 256; i++) {// p[i * 4096] = 100;printf("p[%d * 4096] = %d\n", i, p[i * 4096]);}for (int i = 0; i < 256; i++) {printf("after write, memory %p loaded %d\n", p + i * 4096, PhysicalPageExist((unsigned long)(void *)(p + i * 4096)));}return 0;
}

4 写时拷贝代码

写时拷贝发生在 fork() 的时候,fork() 创建的子进程和父进程共享内存资源,当子进程写的时候,才会给子进程分配新的内存。

如下是写时拷贝的验证代码,从代码运行结果,可以得出如下三点:

(1)fork() 之后,内存写之前,子进程和父进程的内存是共享的。写之前,在父子进程中分别打印出 g_data 的物理地址是相同的,可以证明这点。

(2)父进程写的话,父进程的内存是新分配的,原来的内存给子进程用;子进程写的话,子进程的内存是新分配的,原来的内存给父进程使用。并不是只有子进程写的时候,才会分配内存。

(3)写时拷贝,只有写的时候才会分配新的内存,读的时候不会分配新内存。这点和上节说的内存懒加载的规律是不一样的。

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdint.h>unsigned long GetPhysicalAddrOfVirtual(unsigned long virtual_addr) {int page_size = getpagesize(); // 页大小,一般是 4KBunsigned long virtual_page_index = virtual_addr / page_size; // 虚拟地址页编号unsigned long page_offset = virtual_addr % page_size; // 虚拟地址页内偏移unsigned long virtual_offset = virtual_page_index * sizeof(uint64_t); // 虚拟地址在 pagemap 中对应的表项uint64_t entry = 0;int fd = open("/proc/self/pagemap", O_RDONLY); // 打开文件if (fd < 0) {perror("open /proc/self/pagemap failed: ");return 0;}if (lseek(fd, virtual_offset, SEEK_SET) < 0) { // 定位到虚拟地址对应的页表项perror("seek error: ");return 0;}if (read(fd, &entry, sizeof(uint64_t)) != sizeof(uint64_t)) {perror("read entry error: ");return 0;}if ((((uint64_t)1 << 63) & entry) == 0){ // 使用 bit 63 来判断物理页是否存在printf("page is not present\n");return 0;}uint64_t phy_page_index = (((uint64_t)1 << 55) - 1) & entry; // 获取物理页编号unsigned long physical_addr = (phy_page_index * page_size) + page_offset; // 获取物理地址return physical_addr;
}int g_data = 10;
int main() {printf("pid = %d, g_data = %d, g_data vaddr = %p, g_data paddr = %p\n",getpid(), g_data, &g_data, GetPhysicalAddrOfVirtual(&g_data));pid_t pid = fork();if (pid == 0) {printf("1, child process pid = %d, g_data = %d, g_data vaddr = %p, g_data paddr = %p\n",getpid(), g_data, &g_data, GetPhysicalAddrOfVirtual(&g_data));// 子进程修改,父进程 sleep 2s 之后再读取// sleep(1);// g_data = 20;// 父进程修改,子进程 sleep 2s 之后再读取sleep(2);printf("2, child process pid = %d, g_data = %d, g_data vaddr = %p, g_data paddr = %p\n",getpid(), g_data, &g_data, GetPhysicalAddrOfVirtual(&g_data));} else if (pid > 0) {printf("1, parent process pid = %d, g_data = %d, g_data vaddr = %p, g_data paddr = %p\n",getpid(), g_data, &g_data, GetPhysicalAddrOfVirtual(&g_data));sleep(1);g_data = 20; // 写// printf("read g_data = %d\n", g_data); // 读// sleep(2);printf("2, parent process pid = %d, g_data = %d, g_data vaddr = %p, g_data paddr = %p\n",getpid(), g_data, &g_data, GetPhysicalAddrOfVirtual(&g_data));} else {printf("fork error\n");}return 0;
}

这篇关于[linux][内存] 实例观察 linux 内存懒加载 和 写时拷贝的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/801248

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Linux搭建ftp服务器的步骤

《Linux搭建ftp服务器的步骤》本文给大家分享Linux搭建ftp服务器的步骤,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录ftp搭建1:下载vsftpd工具2:下载客户端工具3:进入配置文件目录vsftpd.conf配置文件4:

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet