KDD 2020(一) | 可调控的多兴趣推荐框架(作者带你读论文)

2024-03-11 16:30

本文主要是介绍KDD 2020(一) | 可调控的多兴趣推荐框架(作者带你读论文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⬆⬆⬆              点击蓝字

关注我们

AI TIME欢迎每一位AI爱好者的加入!

论文:Controllable Multi-Interest Framework for Recommendation

作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang

会议:In Proceedings of the Twenty-Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'20)

Code link: https://github.com/THUDM/ComiRec 

岑宇阔,清华大学计算机系三年级博士生,导师为唐杰教授。科研经历包括:可调控的多兴趣推荐框架、多视图异构网络表示学习、电商场景中的信任关系学习。已在KDD、TKDE等会议上发表多篇论文。

神经网络模型目前已经被广泛地应用于各种推荐系统中。这些基于神经网络的推荐算法通常只会从用户的行为序列中学习到一个用户表征向量,但是这个统一的表征向量往往无法反映用户在一段时期内的多种不同的兴趣。以下图为例,用户 Emma 的商品点击序列反映了她近期三种不同的兴趣,包括珠宝、手提包和化妆品。我们提出了一种可调控的多兴趣推荐框架来解决这种情形。多兴趣抽取模块会从用户的点击序列中捕获到用户多种不同的兴趣,然后可以用来召回一些相似的商品。聚合模块会将这些不同兴趣召回的商品整合起来作为推荐的候选商品,供下游的任务来使用。

对于多兴趣抽取模块,我们在 2 个公开数据集 Amazon 和 Taobao 数据集上进行了实验,验证了我们所提出的模型的有效性。如下表所示,在 2 个数据集上,我们提出的 ComiRec-SA/DR 取得了最好的效果(SA 表示基于自注意力的方法,DR 表示基于动态路由的方法)。

我们基于一个实际用户进行了案例分析。我们的多兴趣抽取模块从用户的历史点击序列中学习到了用户近期的四种不同的兴趣,包括甜品、礼物盒、手机壳以及小配件。左侧是用户点击过的商品,右侧是对应的兴趣表征从大规模商品池中召回回来的一些商品。

References:

[1] Li, Chao, et al. "Multi-interest network with dynamic routing for recommendation at Tmall." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.

[2] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in neural information processing systems. 2017.

本周直播预告:

AI Time欢迎AI领域学者投稿,期待大家剖析学科历史发展和前沿技术。针对热门话题,我们将邀请专家一起论道。同时,我们也长期招募优质的撰稿人,顶级的平台需要顶级的你,请将简历等信息发至yun.he@aminer.cn!

微信联系:AITIME_HY

AI Time是清华大学计算机系一群关注人工智能发展,并有思想情怀的青年学者们创办的圈子,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法、场景、应用的本质问题进行探索,加强思想碰撞,打造一个知识分享的聚集地。

更多资讯请扫码关注

(点击“阅读原文”观看本次直播回放)

这篇关于KDD 2020(一) | 可调控的多兴趣推荐框架(作者带你读论文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/798372

相关文章

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

防近视护眼台灯什么牌子好?五款防近视效果好的护眼台灯推荐

在家里,灯具是属于离不开的家具,每个大大小小的地方都需要的照亮,所以一盏好灯是必不可少的,每个发挥着作用。而护眼台灯就起了一个保护眼睛,预防近视的作用。可以保护我们在学习,阅读的时候提供一个合适的光线环境,保护我们的眼睛。防近视护眼台灯什么牌子好?那我们怎么选择一个优秀的护眼台灯也是很重要,才能起到最大的护眼效果。下面五款防近视效果好的护眼台灯推荐: 一:六个推荐防近视效果好的护眼台灯的

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte