【Leetcode刷题】647. 回文子串

2024-03-11 08:36

本文主要是介绍【Leetcode刷题】647. 回文子串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

647. 回文子串

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:
输入:s = “abc”
输出:3
解释:三个回文子串: “a”, “b”, “c”

示例 2:
输入:s = “aaa”
输出:6
解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”

C++

class Solution {
private:int extend(const string& s, int i, int j, int n) {int res = 0;while (i >= 0 && j < n && s[i]==s[j]) {res++, j++, i--;}return res;}public:int countSubstrings(string s) {if (s.size() <= 1) {return s.size();}int total = 0;for (int i = 0; i < s.size(); i++) {total += extend(s, i, i, s.size());total += extend(s, i, i + 1, s.size());}return total;}
};

暴力解法

两层for循环,遍历区间起始位置和终止位置,然后还需要一层遍历判断这个区间是不是回文。所以时间复杂度:O(n^3)

动态规划

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

    • 如果大家做了很多这种子序列相关的题目,在定义dp数组的时候很自然就会想题目求什么,我们就如何定义dp数组。
    • 绝大多数题目确实是这样,不过本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i] 个回文串的话,我们会发现很难找到递归关系。
    • dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。
    • 所以我们要看回文串的性质。如图:
  2. 确定递推公式

    • 整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
    • 当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
    • 当s[i]与s[j]相等时,有三种情况:
      • 情况一:下标i与j相同,同一个字符例如a,当然是回文子串。
      • 情况二:下标i与j相差为1,例如aa,也是回文子串。
      • 情况三:下标i与j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了。
        • 我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1 区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
    • 递归公式如下:

if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
result++;
dp[i][j] = true;
}
}

  1. dp数组如何初始化

    • dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
    • 所以dp[i][j]初始化为false.
  2. 确定遍历顺序

    • 遍历顺序可有有点讲究了。
    • 首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
    • dp[i + 1][j - 1] 在 dp[i][j]的左下角。
    • 如果这矩阵是从上到下,从左到右遍历,会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
    • 所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
  3. 举例推导dp数组

    • 举例,输入:“aaa”,dp[i][j]状态如下:

true true true
true true
true

举例代码

class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}}return result;}
};

时间复杂度:O(n^2)
空间复杂度:O(n^2)

双指针法

动态规划的空间复杂度是偏高的,我们再看一下双指针法。

首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况。

一个元素可以作为中心点,两个元素也可以作为中心点。

那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。

所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。

这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:

class Solution {
public:int countSubstrings(string s) {int result = 0;for (int i = 0; i < s.size(); i++) {result += extend(s, i, i, s.size()); // 以i为中心result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心}return result;}int extend(const string& s, int i, int j, int n) {int res = 0;while (i >= 0 && j < n && s[i] == s[j]) {i--;j++;res++;}return res;}
};

时间复杂度:O(n^2)
空间复杂度:O(1)

这篇关于【Leetcode刷题】647. 回文子串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797273

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

poj2406(连续重复子串)

题意:判断串s是不是str^n,求str的最大长度。 解题思路:kmp可解,后缀数组的倍增算法超时。next[i]表示在第i位匹配失败后,自动跳转到next[i],所以1到next[n]这个串 等于 n-next[n]+1到n这个串。 代码如下; #include<iostream>#include<algorithm>#include<stdio.h>#include<math.

poj3261(可重复k次的最长子串)

题意:可重复k次的最长子串 解题思路:求所有区间[x,x+k-1]中的最小值的最大值。求sa时间复杂度Nlog(N),求最值时间复杂度N*N,但实际复杂度很低。题目数据也比较水,不然估计过不了。 代码入下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring

spoj705( 求不相同的子串个数)

题意:求串s的不同子串的个数 解题思路:任何子串都是某个后缀的前缀,对n个后缀排序,求某个后缀的前缀的个数,减去height[i](第i个后缀与第i-1 个后缀有相同的height[i]个前缀)。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstrin

csu1328(近似回文串)

题意:求近似回文串的最大长度,串长度为1000。 解题思路:以某点为中心,向左右两边扩展,注意奇偶分开讨论,暴力解即可。时间复杂度O(n^2); 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>#include<string>#inclu

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

leetcode-24Swap Nodes in Pairs

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode swapPairs(L

leetcode-23Merge k Sorted Lists

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode mergeKLists

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点