NUC980开发板CAN开发笔记

2024-03-10 11:12
文章标签 开发 笔记 开发板 nuc980

本文主要是介绍NUC980开发板CAN开发笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、内核开启CAN

CAN 设置
NUC980 系列带有2个CAN(Controller Area Network), 可以分别独立设置。 请按以下的说明来使能CAN功能. 每个CAN可以单独的开关. CAN0有多组管脚可以选择, 需要一并设置。
使用者也可以设置CAN的唤醒功能。步骤如下:
进入 NUC980-linux-4.4.y-master在这里插入图片描述
打开终端,输入

make menuconfig

选择 Networking support
在这里插入图片描述
选择 CAN bus subsystem support
在这里插入图片描述
选择 CAN Device Drivers
在这里插入图片描述
选择 NUC980 CAN0~CAN3 devices
在这里插入图片描述
根据电路选择对应的引脚
在这里插入图片描述
保存,退出。
重新编译镜像,下载到开发板即可。

注意:
内核配置中,查看使用的CAN引脚是否和其它功能比如串口有冲突有的话需要取消未使用的功能配置。

电路设计,使用 CAN芯片 SN65HVD230 (SN65HVD23x 3.3V CAN 总线收发器)。
在这里插入图片描述
需要注意RS引脚,该引脚是模式配置。
在这里插入图片描述

二、测试代码

指令查看

ifconfig -a

在这里插入图片描述

或者

ls /sys/class/net

在这里插入图片描述

官方测试代码

/** Copyright (c) 2014 Nuvoton technology corporation* All rights reserved.** This program is free software; you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation; either version 2 of the License, or* (at your option) any later version.**//* libsocketcan.c** (C) 2009 Luotao Fu <l.fu@pengutronix.de>** This library is free software; you can redistribute it and/or modify it under* the terms of the GNU Lesser General Public License as published by the Free* Software Foundation; either version 2.1 of the License, or (at your option)* any later version.** This library is distributed in the hope that it will be useful, but WITHOUT* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more* details.** You should have received a copy of the GNU Lesser General Public License* along with this library; if not, write to the Free Software Foundation, Inc.,* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA*/#include <getopt.h>
#include <libgen.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <errno.h>
#include <poll.h>#include <net/if.h>#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/uio.h>#include <linux/types.h>#include <linux/can.h>
#include <linux/can/raw.h>#include <linux/rtnetlink.h>
#include <linux/netlink.h>/** CAN bit-timing parameters*/
struct can_bittiming {__u32 bitrate;		/* Bit-rate in bits/second */__u32 sample_point;	/* Sample point in one-tenth of a percent */__u32 tq;		/* Time quanta (TQ) in nanoseconds */__u32 prop_seg;		/* Propagation segment in TQs */__u32 phase_seg1;	/* Phase buffer segment 1 in TQs */__u32 phase_seg2;	/* Phase buffer segment 2 in TQs */__u32 sjw;		/* Synchronisation jump width in TQs */__u32 brp;		/* Bit-rate prescaler */
};/** CAN harware-dependent bit-timing constant*/
struct can_bittiming_const {char name[16];		/* Name of the CAN controller hardware */__u32 tseg1_min;	/* Time segement 1 = prop_seg + phase_seg1 */__u32 tseg1_max;__u32 tseg2_min;	/* Time segement 2 = phase_seg2 */__u32 tseg2_max;__u32 sjw_max;		/* Synchronisation jump width */__u32 brp_min;		/* Bit-rate prescaler */__u32 brp_max;__u32 brp_inc;
};/** CAN clock parameters*/
struct can_clock {__u32 freq;		/* CAN system clock frequency in Hz */
};/** CAN operational and error states*/
enum can_state {CAN_STATE_ERROR_ACTIVE = 0,	/* RX/TX error count < 96 */CAN_STATE_ERROR_WARNING,	/* RX/TX error count < 128 */CAN_STATE_ERROR_PASSIVE,	/* RX/TX error count < 256 */CAN_STATE_BUS_OFF,		/* RX/TX error count >= 256 */CAN_STATE_STOPPED,		/* Device is stopped */CAN_STATE_SLEEPING,		/* Device is sleeping */CAN_STATE_MAX
};/** CAN bus error counters*/
struct can_berr_counter {__u16 txerr;__u16 rxerr;
};/** CAN controller mode*/
struct can_ctrlmode {__u32 mask;__u32 flags;
};#define CAN_CTRLMODE_LOOPBACK	0x01	/* Loopback mode */
#define CAN_CTRLMODE_LISTENONLY	0x02 	/* Listen-only mode */
#define CAN_CTRLMODE_3_SAMPLES	0x04	/* Triple sampling mode */
#define CAN_CTRLMODE_ONE_SHOT 0x08 /* One-Shot mode */
#define CAN_CTRLMODE_BERR_REPORTING 0x10 /* Bus-error reporting *//** CAN device statistics*/
struct can_device_stats {__u32 bus_error;	/* Bus errors */__u32 error_warning;	/* Changes to error warning state */__u32 error_passive;	/* Changes to error passive state */__u32 bus_off;		/* Changes to bus off state */__u32 arbitration_lost; /* Arbitration lost errors */__u32 restarts;		/* CAN controller re-starts */
};/** CAN netlink interface*/
enum {IFLA_CAN_UNSPEC,IFLA_CAN_BITTIMING,IFLA_CAN_BITTIMING_CONST,IFLA_CAN_CLOCK,IFLA_CAN_STATE,IFLA_CAN_CTRLMODE,IFLA_CAN_RESTART_MS,IFLA_CAN_RESTART,IFLA_CAN_BERR_COUNTER,__IFLA_CAN_MAX
};#define parse_rtattr_nested(tb, max, rta) \(parse_rtattr((tb), (max), RTA_DATA(rta), RTA_PAYLOAD(rta)))#define NLMSG_TAIL(nmsg) \((struct rtattr *) (((void *) (nmsg)) + NLMSG_ALIGN((nmsg)->nlmsg_len)))#define IFLA_CAN_MAX	(__IFLA_CAN_MAX - 1)#define IF_UP 1
#define IF_DOWN 2#define GET_STATE 1
#define GET_RESTART_MS 2
#define GET_BITTIMING 3
#define GET_CTRLMODE 4
#define GET_CLOCK 5
#define GET_BITTIMING_CONST 6
#define GET_BERR_COUNTER 7
#define GET_XSTATS 8struct get_req {struct nlmsghdr n;struct rtgenmsg g;
};struct set_req {struct nlmsghdr n;struct ifinfomsg i;char buf[1024];
};struct req_info {__u8 restart;__u8 disable_autorestart;__u32 restart_ms;struct can_ctrlmode *ctrlmode;struct can_bittiming *bittiming;
};#define PF_CAN 29#define SIOCGIFINDEX    0x8933          /* name -> if_index mapping     */
#define SIOCGIFFLAGS    0x8913          /* get flags                    *//* Standard well-defined IP protocols.  */
enum
{IPPROTO_IP = 0,         /* Dummy protocol for TCP       */IPPROTO_ICMP = 1,       /* Internet Control Message Protocol    */IPPROTO_IGMP = 2,       /* Internet Group Management Protocol   */IPPROTO_IPIP = 4,       /* IPIP tunnels (older KA9Q tunnels use 94) */IPPROTO_TCP = 6,        /* Transmission Control Protocol    */IPPROTO_EGP = 8,        /* Exterior Gateway Protocol        */IPPROTO_PUP = 12,       /* PUP protocol             */IPPROTO_UDP = 17,       /* User Datagram Protocol       */IPPROTO_IDP = 22,       /* XNS IDP protocol         */IPPROTO_DCCP = 33,      /* Datagram Congestion Control Protocol */IPPROTO_RSVP = 46,      /* RSVP protocol            */IPPROTO_GRE = 47,       /* Cisco GRE tunnels (rfc 1701,1702)    */IPPROTO_IPV6 = 41,      /* IPv6-in-IPv4 tunnelling      */IPPROTO_ESP = 50,           /* Encapsulation Security Payload protocol */IPPROTO_AH = 51,                /* Authentication Header protocol       */IPPROTO_BEETPH = 94,            /* IP option pseudo header for BEET */IPPROTO_PIM    = 103,       /* Protocol Independent Multicast   */IPPROTO_COMP   = 108,           /* Compression Header protocol */IPPROTO_SCTP   = 132,       /* Stream Control Transport Protocol    */IPPROTO_UDPLITE = 136,      /* UDP-Lite (RFC 3828)          */IPPROTO_RAW  = 255,     /* Raw IP packets           */IPPROTO_MAX
};/* particular protocols of the protocol family PF_CAN */
#define CAN_RAW         1 /* RAW sockets */
#define CAN_BCM         2 /* Broadcast Manager */
#define CAN_TP16        3 /* VAG Transport Protocol v1.6 */
#define CAN_TP20        4 /* VAG Transport Protocol v2.0 */
#define CAN_MCNET       5 /* Bosch MCNet */
#define CAN_ISOTP       6 /* ISO 15765-2 Transport Protocol */
#define CAN_NPROTO      7static void
parse_rtattr(struct rtattr **tb, int max, struct rtattr *rta, int len)
{memset(tb, 0, sizeof(*tb) * max);while (RTA_OK(rta, len)) {if (rta->rta_type <= max) {tb[rta->rta_type] = rta;}rta = RTA_NEXT(rta, len);}
}static int addattr32(struct nlmsghdr *n, size_t maxlen, int type, __u32 data)
{int len = RTA_LENGTH(4);struct rtattr *rta;if (NLMSG_ALIGN(n->nlmsg_len) + len > maxlen) {fprintf(stderr,"addattr32: Error! max allowed bound %zu exceeded\n",maxlen);return -1;}rta = NLMSG_TAIL(n);rta->rta_type = type;rta->rta_len = len;memcpy(RTA_DATA(rta), &data, 4);n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + len;return 0;
}static int addattr_l(struct nlmsghdr *n, size_t maxlen, int type,const void *data, int alen)
{int len = RTA_LENGTH(alen);struct rtattr *rta;if (NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len) > maxlen) {fprintf(stderr,"addattr_l ERROR: message exceeded bound of %zu\n",maxlen);return -1;}rta = NLMSG_TAIL(n);rta->rta_type = type;rta->rta_len = len;memcpy(RTA_DATA(rta), data, alen);n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len);return 0;
}/*** @ingroup intern* @brief send_mod_request - send a linkinfo modification request** @param fd decriptor to a priorly opened netlink socket* @param n netlink message containing the request** sends a request to setup the the linkinfo to netlink layer and awaits the* status.** @return 0 if success* @return negativ if failed*/
static int send_mod_request(int fd, struct nlmsghdr *n)
{int status;struct sockaddr_nl nladdr;struct nlmsghdr *h;struct iovec iov = {.iov_base = (void *)n,.iov_len = n->nlmsg_len};struct msghdr msg = {.msg_name = &nladdr,.msg_namelen = sizeof(nladdr),.msg_iov = &iov,.msg_iovlen = 1,};char buf[16384];memset(&nladdr, 0, sizeof(nladdr));nladdr.nl_family = AF_NETLINK;nladdr.nl_pid = 0;nladdr.nl_groups = 0;n->nlmsg_seq = 0;n->nlmsg_flags |= NLM_F_ACK;status = sendmsg(fd, &msg, 0);if (status < 0) {perror("Cannot talk to rtnetlink");return -1;}iov.iov_base = buf;while (1) {iov.iov_len = sizeof(buf);status = recvmsg(fd, &msg, 0);for (h = (struct nlmsghdr *)buf; (size_t) status >= sizeof(*h);) {int len = h->nlmsg_len;int l = len - sizeof(*h);if (l < 0 || len > status) {if (msg.msg_flags & MSG_TRUNC) {fprintf(stderr, "Truncated message\n");return -1;}printf("!!!malformed message: len=%d\n", len);return -1;}if (h->nlmsg_type == NLMSG_ERROR) {struct nlmsgerr *err =(struct nlmsgerr *)NLMSG_DATA(h);if ((size_t) l < sizeof(struct nlmsgerr)) {fprintf(stderr, "ERROR truncated\n");} else {errno = -err->error;if (errno == 0)return 0;perror("RTNETLINK answers");}return -1;}status -= NLMSG_ALIGN(len);h = (struct nlmsghdr *)((char *)h + NLMSG_ALIGN(len));}}return 0;
}/*** @ingroup intern* @brief send_dump_request - send a dump linkinfo request** @param fd decriptor to a priorly opened netlink socket* @param family rt_gen message family* @param type netlink message header type** @return 0 if success* @return negativ if failed*/
static int send_dump_request(int fd, int family, int type)
{struct get_req req;memset(&req, 0, sizeof(req));req.n.nlmsg_len = sizeof(req);req.n.nlmsg_type = type;req.n.nlmsg_flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH;req.n.nlmsg_pid = 0;req.n.nlmsg_seq = 0;req.g.rtgen_family = family;return send(fd, (void *)&req, sizeof(req), 0);
}//extern int optind, opterr, optopt;/*** @ingroup intern* @brief open_nl_sock - open a netlink socket** opens a netlink socket and returns the socket descriptor** @return 0 if success* @return negativ if failed*/
static int open_nl_sock()
{int fd;int sndbuf = 32768;int rcvbuf = 32768;unsigned int addr_len;struct sockaddr_nl local;fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);if (fd < 0) {printf("Cannot open netlink socket");return -1;}setsockopt(fd, SOL_SOCKET, SO_SNDBUF, (void *)&sndbuf, sizeof(sndbuf));setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (void *)&rcvbuf, sizeof(rcvbuf));memset(&local, 0, sizeof(local));local.nl_family = AF_NETLINK;local.nl_groups = 0;if (bind(fd, (struct sockaddr *)&local, sizeof(local)) < 0) {printf("Cannot bind netlink socket");return -1;}addr_len = sizeof(local);if (getsockname(fd, (struct sockaddr *)&local, &addr_len) < 0) {printf("Cannot getsockname");return -1;}if (addr_len != sizeof(local)) {printf("Wrong address length %u\n", addr_len);return -1;}if (local.nl_family != AF_NETLINK) {printf("Wrong address family %d\n", local.nl_family);return -1;}return fd;
}/*** @ingroup intern* @brief do_get_nl_link - get linkinfo** @param fd socket file descriptor to a priorly opened netlink socket* @param acquire  which parameter we want to get* @param name name of the can device. This is the netdev name, as ifconfig -a* shows in your system. usually it contains prefix "can" and the numer of the* can line. e.g. "can0"* @param res pointer to store the result** This callback send a dump request into the netlink layer, collect the packet* containing the linkinfo and fill the pointer res points to depending on the* acquire mode set in param acquire.** @return 0 if success* @return -1 if failed*/static int do_get_nl_link(int fd, __u8 acquire, const char *name, void *res)
{struct sockaddr_nl peer;char cbuf[64];char nlbuf[1024 * 8];int ret = -1;int done = 0;struct iovec iov = {.iov_base = (void *)nlbuf,.iov_len = sizeof(nlbuf),};struct msghdr msg = {.msg_name = (void *)&peer,.msg_namelen = sizeof(peer),.msg_iov = &iov,.msg_iovlen = 1,.msg_control = &cbuf,.msg_controllen = sizeof(cbuf),.msg_flags = 0,};struct nlmsghdr *nl_msg;ssize_t msglen;struct rtattr *linkinfo[IFLA_INFO_MAX + 1];struct rtattr *can_attr[IFLA_CAN_MAX + 1];if (send_dump_request(fd, AF_PACKET, RTM_GETLINK) < 0) {perror("Cannot send dump request");return ret;}while (!done && (msglen = recvmsg(fd, &msg, 0)) > 0) {size_t u_msglen = (size_t) msglen;/* Check to see if the buffers in msg get truncated */if (msg.msg_namelen != sizeof(peer) ||(msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {fprintf(stderr, "Uhoh... truncated message.\n");return -1;}for (nl_msg = (struct nlmsghdr *)nlbuf;NLMSG_OK(nl_msg, u_msglen);nl_msg = NLMSG_NEXT(nl_msg, u_msglen)) {int type = nl_msg->nlmsg_type;int len;if (type == NLMSG_DONE) {done++;continue;}if (type != RTM_NEWLINK)continue;struct ifinfomsg *ifi = NLMSG_DATA(nl_msg);struct rtattr *tb[IFLA_MAX + 1];len =nl_msg->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifaddrmsg));parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);if (strcmp((char *)RTA_DATA(tb[IFLA_IFNAME]), name) != 0)continue;if (tb[IFLA_LINKINFO])parse_rtattr_nested(linkinfo,IFLA_INFO_MAX, tb[IFLA_LINKINFO]);elsecontinue;if (acquire == GET_XSTATS) {if (!linkinfo[IFLA_INFO_XSTATS])fprintf(stderr, "no can statistics found\n");else {memcpy(res, RTA_DATA(linkinfo[IFLA_INFO_XSTATS]),sizeof(struct can_device_stats));ret = 0;}continue;}if (!linkinfo[IFLA_INFO_DATA]) {fprintf(stderr, "no link data found\n");return ret;}parse_rtattr_nested(can_attr, IFLA_CAN_MAX,linkinfo[IFLA_INFO_DATA]);switch (acquire) {case GET_STATE:if (can_attr[IFLA_CAN_STATE]) {*((int *)res) = *((__u32 *)RTA_DATA(can_attr[IFLA_CAN_STATE]));ret = 0;} else {fprintf(stderr, "no state data found\n");}break;case GET_RESTART_MS:if (can_attr[IFLA_CAN_RESTART_MS]) {*((__u32 *) res) = *((__u32 *)RTA_DATA(can_attr[IFLA_CAN_RESTART_MS]));ret = 0;} elsefprintf(stderr, "no restart_ms data found\n");break;case GET_BITTIMING:if (can_attr[IFLA_CAN_BITTIMING]) {memcpy(res,RTA_DATA(can_attr[IFLA_CAN_BITTIMING]),sizeof(struct can_bittiming));ret = 0;} elsefprintf(stderr, "no bittiming data found\n");break;case GET_CTRLMODE:if (can_attr[IFLA_CAN_CTRLMODE]) {memcpy(res,RTA_DATA(can_attr[IFLA_CAN_CTRLMODE]),sizeof(struct can_ctrlmode));ret = 0;} elsefprintf(stderr, "no ctrlmode data found\n");break;case GET_CLOCK:if (can_attr[IFLA_CAN_CLOCK]) {memcpy(res,RTA_DATA(can_attr[IFLA_CAN_CLOCK]),sizeof(struct can_clock));ret = 0;} elsefprintf(stderr,"no clock parameter data found\n");break;case GET_BITTIMING_CONST:if (can_attr[IFLA_CAN_BITTIMING_CONST]) {memcpy(res,RTA_DATA(can_attr[IFLA_CAN_BITTIMING_CONST]),sizeof(struct can_bittiming_const));ret = 0;} elsefprintf(stderr, "no bittiming_const data found\n");break;case GET_BERR_COUNTER:if (can_attr[IFLA_CAN_BERR_COUNTER]) {memcpy(res,RTA_DATA(can_attr[IFLA_CAN_BERR_COUNTER]),sizeof(struct can_berr_counter));ret = 0;} elsefprintf(stderr, "no berr_counter data found\n");break;default:fprintf(stderr, "unknown acquire mode\n");}}}return ret;
}/*** @ingroup intern* @brief get_link - get linkinfo** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param acquire which parameter we want to get* @param res pointer to store the result** This is a wrapper for do_get_nl_link** @return 0 if success* @return -1 if failed*/
static int get_link(const char *name, __u8 acquire, void *res)
{int err, fd;fd = open_nl_sock();if (fd < 0)return -1;err = do_get_nl_link(fd, acquire, name, res);close(fd);return err;}/*** @ingroup intern* @brief do_set_nl_link - setup linkinfo** @param fd socket file descriptor to a priorly opened netlink socket* @param if_state state of the interface we want to put the device into. this* parameter is only set if you want to use the callback to driver up/down the* device* @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param req_info request parameters** This callback can do two different tasks:* - bring up/down the interface* - set up a netlink packet with request, as set up in req_info* Which task this callback will do depends on which parameters are set.** @return 0 if success* @return -1 if failed*/
static int do_set_nl_link(int fd, __u8 if_state, const char *name,struct req_info *req_info)
{struct set_req req;const char *type = "can";memset(&req, 0, sizeof(req));req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));req.n.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;req.n.nlmsg_type = RTM_NEWLINK;req.i.ifi_family = 0;req.i.ifi_index = if_nametoindex(name);if (req.i.ifi_index == 0) {fprintf(stderr, "Cannot find device \"%s\"\n", name);return -1;}if (if_state) {switch (if_state) {case IF_DOWN:req.i.ifi_change |= IFF_UP;req.i.ifi_flags &= ~IFF_UP;break;case IF_UP:req.i.ifi_change |= IFF_UP;req.i.ifi_flags |= IFF_UP;break;default:fprintf(stderr, "unknown state\n");return -1;}}if (req_info != NULL) {/* setup linkinfo section */struct rtattr *linkinfo = NLMSG_TAIL(&req.n);addattr_l(&req.n, sizeof(req), IFLA_LINKINFO, NULL, 0);addattr_l(&req.n, sizeof(req), IFLA_INFO_KIND, type,strlen(type));/* setup data section */struct rtattr *data = NLMSG_TAIL(&req.n);addattr_l(&req.n, sizeof(req), IFLA_INFO_DATA, NULL, 0);if (req_info->restart_ms > 0 || req_info->disable_autorestart)addattr32(&req.n, 1024, IFLA_CAN_RESTART_MS,req_info->restart_ms);if (req_info->restart)addattr32(&req.n, 1024, IFLA_CAN_RESTART, 1);if (req_info->bittiming != NULL) {addattr_l(&req.n, 1024, IFLA_CAN_BITTIMING,req_info->bittiming,sizeof(struct can_bittiming));}if (req_info->ctrlmode != NULL) {addattr_l(&req.n, 1024, IFLA_CAN_CTRLMODE,req_info->ctrlmode,sizeof(struct can_ctrlmode));}/* mark end of data section */data->rta_len = (void *)NLMSG_TAIL(&req.n) - (void *)data;/* mark end of link info section */linkinfo->rta_len =(void *)NLMSG_TAIL(&req.n) - (void *)linkinfo;}return send_mod_request(fd, &req.n);
}/*** @ingroup intern* @brief set_link - open a netlink socket and setup linkinfo** @param name name of the can device. This is the netdev name, as ifconfig -a* shows in your system. usually it contains prefix "can" and the numer of the* can line. e.g. "can0"* @param if_state state of the interface we want to put the device into. this* parameter is only set if you want to use the callback to driver up/down the* device* @param req_info request parameters** This is a wrapper for do_set_nl_link. It opens a netlink socket and sends* down the requests.** @return 0 if success* @return -1 if failed*/
static int set_link(const char *name, __u8 if_state, struct req_info *req_info)
{int err, fd;fd = open_nl_sock();if (fd < 0)return -1;err = do_set_nl_link(fd, if_state, name, req_info);close(fd);return err;
}/*** @ingroup extern* can_do_start - start the can interface* @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"** This starts the can interface with the given name. It simply changes the if* state of the interface to up. All initialisation works will be done in* kernel. The if state can also be queried by a simple ifconfig.** @return 0 if success* @return -1 if failed*/
int can_do_start(const char *name)
{return set_link(name, IF_UP, NULL);
}/*** @ingroup extern* can_do_stop - stop the can interface* @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"** This stops the can interface with the given name. It simply changes the if* state of the interface to down. Any running communication would be stopped.** @return 0 if success* @return -1 if failed*/
int can_do_stop(const char *name)
{return set_link(name, IF_DOWN, NULL);
}/*** @ingroup extern* can_do_restart - restart the can interface* @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"** This triggers the start mode of the can device.** NOTE:* - restart mode can only be triggerd if the device is in BUS_OFF and the auto* restart not turned on (restart_ms == 0)** @return 0 if success* @return -1 if failed*/
int can_do_restart(const char *name)
{int state;__u32 restart_ms;/* first we check if we can restart the device at all */if ((can_get_state(name, &state)) < 0) {fprintf(stderr, "cannot get bustate, ""something is seriously wrong\n");return -1;} else if (state != CAN_STATE_BUS_OFF) {fprintf(stderr,"Device is not in BUS_OFF," " no use to restart\n");return -1;}if ((can_get_restart_ms(name, &restart_ms)) < 0) {fprintf(stderr, "cannot get restart_ms, ""something is seriously wrong\n");return -1;} else if (restart_ms > 0) {fprintf(stderr,"auto restart with %ums interval is turned on,"" no use to restart\n", restart_ms);return -1;}struct req_info req_info = {.restart = 1,};return set_link(name, 0, &req_info);
}/*** @ingroup extern* can_set_restart_ms - set interval of auto restart.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param restart_ms interval of auto restart in milliseconds** This sets how often the device shall automatically restart the interface in* case that a bus_off is detected.** @return 0 if success* @return -1 if failed*/
int can_set_restart_ms(const char *name, __u32 restart_ms)
{struct req_info req_info = {.restart_ms = restart_ms,};if (restart_ms == 0)req_info.disable_autorestart = 1;return set_link(name, 0, &req_info);
}/*** @ingroup extern* can_set_ctrlmode - setup the control mode.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"** @param cm pointer of a can_ctrlmode struct** This sets the control mode of the can device. There're currently three* different control modes:* - LOOPBACK* - LISTEN_ONLY* - TRIPPLE_SAMPLING** You have to define the control mode struct yourself. a can_ctrlmode struct* is declared as:** @code* struct can_ctrlmode {*	__u32 mask;*	__u32 flags;* }* @endcode** You can use mask to select modes you want to control and flags to determine* if you want to turn the selected mode(s) on or off. Every control mode is* mapped to an own macro** @code* #define CAN_CTRLMODE_LOOPBACK   0x1* #define CAN_CTRLMODE_LISTENONLY 0x2* #define CAN_CTRLMODE_3_SAMPLES  0x4* @endcode** e.g. the following pseudocode** @code* struct can_ctrlmode cm;* memset(&cm, 0, sizeof(cm));* cm.mask = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;* cm.flags = CAN_CTRLMODE_LOOPBACK;* can_set_ctrlmode(candev, &cm);* @endcode** will turn the loopback mode on and listenonly mode off.** @return 0 if success* @return -1 if failed*/int can_set_ctrlmode(const char *name, struct can_ctrlmode *cm)
{struct req_info req_info = {.ctrlmode = cm,};return set_link(name, 0, &req_info);
}/*** @ingroup extern* can_set_bittiming - setup the bittiming.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param bt pointer to a can_bittiming struct** This sets the bittiming of the can device. This is for advantage usage. In* normal cases you should use can_set_bitrate to simply define the bitrate and* let the driver automatically calculate the bittiming. You will only need this* function if you wish to define the bittiming in expert mode with fully* manually defined timing values.* You have to define the bittiming struct yourself. a can_bittiming struct* consists of:** @code* struct can_bittiming {*	__u32 bitrate;*	__u32 sample_point;*	__u32 tq;*	__u32 prop_seg;*	__u32 phase_seg1;*	__u32 phase_seg2;*	__u32 sjw;*	__u32 brp;* }* @endcode** to define a customized bittiming, you have to define tq, prop_seq,* phase_seg1, phase_seg2 and sjw. See http://www.can-cia.org/index.php?id=88* for more information about bittiming and synchronizations on can bus.** @return 0 if success* @return -1 if failed*/int can_set_bittiming(const char *name, struct can_bittiming *bt)
{struct req_info req_info = {.bittiming = bt,};return set_link(name, 0, &req_info);
}/*** @ingroup extern* can_set_bitrate - setup the bitrate.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param bitrate bitrate of the can bus** This is the recommended way to setup the bus bit timing. You only have to* give a bitrate value here. The exact bit timing will be calculated* automatically. To use this function, make sure that CONFIG_CAN_CALC_BITTIMING* is set to y in your kernel configuration. bitrate can be a value between* 1000(1kbit/s) and 1000000(1000kbit/s).** @return 0 if success* @return -1 if failed*/int can_set_bitrate(const char *name, __u32 bitrate)
{struct can_bittiming bt;memset(&bt, 0, sizeof(bt));bt.bitrate = bitrate;return can_set_bittiming(name, &bt);
}/*** @ingroup extern* can_set_bitrate_samplepoint - setup the bitrate.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param bitrate bitrate of the can bus* @param sample_point sample point value** This one is similar to can_set_bitrate, only you can additionally set up the* time point for sampling (sample point) customly instead of using the* CIA recommended value. sample_point can be a value between 0 and 999.** @return 0 if success* @return -1 if failed*/
int can_set_bitrate_samplepoint(const char *name, __u32 bitrate,__u32 sample_point)
{struct can_bittiming bt;memset(&bt, 0, sizeof(bt));bt.bitrate = bitrate;bt.sample_point = sample_point;return can_set_bittiming(name, &bt);
}/*** @ingroup extern* can_get_state - get the current state of the device** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param state pointer to store the state** This one stores the current state of the can interface into the given* pointer. Valid states are:* - CAN_STATE_ERROR_ACTIVE* - CAN_STATE_ERROR_WARNING* - CAN_STATE_ERROR_PASSIVE* - CAN_STATE_BUS_OFF* - CAN_STATE_STOPPED* - CAN_STATE_SLEEPING** The first four states is determined by the value of RX/TX error counter.* Please see relevant can specification for more information about this. A* device in STATE_STOPPED is an inactive device. STATE_SLEEPING is not* implemented on all devices.** @return 0 if success* @return -1 if failed*/int can_get_state(const char *name, int *state)
{return get_link(name, GET_STATE, state);
}/*** @ingroup extern* can_get_restart_ms - get the current interval of auto restarting.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param restart_ms pointer to store the value.** This one stores the current interval of auto restarting into the given* pointer.** The socketcan framework can automatically restart a device if it is in* bus_off in a given interval. This function gets this value in milliseconds.* restart_ms == 0 means that autorestarting is turned off.** @return 0 if success* @return -1 if failed*/int can_get_restart_ms(const char *name, __u32 *restart_ms)
{return get_link(name, GET_RESTART_MS, restart_ms);
}/*** @ingroup extern* can_get_bittiming - get the current bittimnig configuration.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param bt pointer to the bittiming struct.** This one stores the current bittiming configuration.** Please see can_set_bittiming for more information about bit timing.** @return 0 if success* @return -1 if failed*/
int can_get_bittiming(const char *name, struct can_bittiming *bt)
{return get_link(name, GET_BITTIMING, bt);
}/*** @ingroup extern* can_get_ctrlmode - get the current control mode.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param cm pointer to the ctrlmode struct.** This one stores the current control mode configuration.** Please see can_set_ctrlmode for more information about control modes.** @return 0 if success* @return -1 if failed*/int can_get_ctrlmode(const char *name, struct can_ctrlmode *cm)
{return get_link(name, GET_CTRLMODE, cm);
}/*** @ingroup extern* can_get_clock - get the current clock struct.** @param name: name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param clock pointer to the clock struct.** This one stores the current clock configuration. At the time of writing the* can_clock struct only contains information about the clock frequecy. This* information is e.g. essential while setting up the bit timing.** @return 0 if success* @return -1 if failed*/
int can_get_clock(const char *name, struct can_clock *clock)
{return get_link(name, GET_CLOCK, clock);
}/*** @ingroup extern* can_get_bittiming_const - get the current bittimnig constant.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param btc pointer to the bittiming constant struct.** This one stores the hardware dependent bittiming constant. The* can_bittiming_const struct consists:** @code* struct can_bittiming_const {*	char name[16];*	__u32 tseg1_min;*	__u32 tseg1_max;*	__u32 tseg2_min;*	__u32 tseg2_max;*	__u32 sjw_max;*	__u32 brp_min;*	__u32 brp_max;*	__u32 brp_inc;*	};* @endcode** The information in this struct is used to calculate the bus bit timing* automatically.** @return 0 if success* @return -1 if failed*/
int can_get_bittiming_const(const char *name, struct can_bittiming_const *btc)
{return get_link(name, GET_BITTIMING_CONST, btc);
}/*** @ingroup extern* can_get_berr_counter - get the tx/rx error counter.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param bc pointer to the error counter struct..** This one gets the current rx/tx error counter from the hardware.** @code* struct can_berr_counter {*	__u16 txerr;*	__u16 rxerr;*	};* @endcode** @return 0 if success* @return -1 if failed*/
int can_get_berr_counter(const char *name, struct can_berr_counter *bc)
{return get_link(name, GET_BERR_COUNTER, bc);
}/*** @ingroup extern* can_get_device_stats - get the can_device_stats.** @param name name of the can device. This is the netdev name, as ifconfig -a shows* in your system. usually it contains prefix "can" and the numer of the can* line. e.g. "can0"* @param bc pointer to the error counter struct..** This one gets the current can_device_stats.** Please see struct can_device_stats for more information.** @return 0 if success* @return -1 if failed*/
int can_get_device_stats(const char *name, struct can_device_stats *cds)
{return get_link(name, GET_XSTATS, cds);
}void can_write_test(int arg)
{int s = (int) arg;struct can_frame frame;int dlc = 8;int i, rtr = 0, extended = 0;ssize_t len;int err;struct pollfd fds[] = {{.fd = s,.events = POLLOUT,},};for(i = 0; i < dlc; i++) {frame.data[i] = 0x31 + i;}frame.can_id = 0x100;frame.can_dlc = dlc;if (extended) {frame.can_id &= CAN_EFF_MASK;frame.can_id |= CAN_EFF_FLAG;}elseframe.can_id &= CAN_SFF_MASK;if (rtr)frame.can_id |= CAN_RTR_FLAG;printf("\n CAN0 transfer id: %d", frame.can_id);printf("\n CAN0 transfer dlc: %d", frame.can_dlc);printf("\n CAN0 transfer Data:\n");for (i = 0; i < frame.can_dlc; i++)printf(" 0x%02x", frame.data[i]);printf("\n");again:while(1) {err = poll(fds, 1, 1000);if((err == -1) || (err == 0))printf("\n poll write error = %d \n", err);elsebreak;}/* send frame */len = write(s, &frame, sizeof(frame));usleep(500);if(len != sizeof(frame))printf("\n write error %d \n", errno);if (len == -1) {switch (errno) {case ENOBUFS:usleep(1000);break;case EINTR: /* fallthrough */usleep(1000);goto again;default:usleep(1000);goto again;}}printf("\n CAN0 transfer end !!!\n");
}void can_read_test(int arg)
{int s = (int) arg;struct can_frame Rx_frame;fd_set readfds;int i;ssize_t nbytes;int err;struct pollfd fds[] = {{.fd	= s,.events	= POLLIN,},};while(1) {err = poll(fds, 1, 10000);if((err == -1) || (err == 0))printf("\n poll read error =%d ", err);elsebreak;}nbytes = read(s, &Rx_frame, sizeof(Rx_frame));printf("\n CAN1 receive id = %d", Rx_frame.can_id);printf("\n CAN1 receive dlc = %d", Rx_frame.can_dlc);printf("\n CAN1 receive Data:\n");for (i = 0; i < Rx_frame.can_dlc; i++)printf(" 0x%02x", Rx_frame.data[i]);printf("\n");
}int main(int argc, char **argv)
{struct ifreq ifr;struct sockaddr_can addr;int family = PF_CAN, type = SOCK_RAW, proto = CAN_RAW;int s[2];int j;can_set_bitrate("can0", 500000);can_do_start("can0");can_set_bitrate("can1", 500000);can_do_start("can1");for(j = 0; j <= 1; j++){if(j == 0){strcpy(ifr.ifr_name, "can0");}else if(j == 1){strcpy(ifr.ifr_name, "can1");}s[j] = socket(family, type, proto);if (s[j] < 0){printf("ERROR");return 1;}addr.can_family = family;if (ioctl(s[j], SIOCGIFINDEX, &ifr) < 0){printf("ERROR");return 1;}addr.can_ifindex = ifr.ifr_ifindex;if (bind(s[j], (struct sockaddr *)&addr, sizeof(addr)) < 0){printf("ERROR");return 1;}}can_write_test(s[0]);can_read_test(s[1]);can_do_stop("can0");can_do_stop("can1");return 0;
}

参考官方,修改CAN0口测试收发,修改后代码如下

int main(int argc, char **argv)
{struct can_frame frame;struct can_frame Rx_frame;struct ifreq ifr;struct sockaddr_can addr;int family = PF_CAN, type = SOCK_RAW, proto = CAN_RAW;int dlc = 8;int can0_fd, ret, i, err,rtr = 0, extended = 0;int j;int ret1;int Tx_cnt = 0;ssize_t nbytes;can_set_bitrate("can0", 5000);can_do_start("can0");strcpy(ifr.ifr_name, "can0");can0_fd = socket(family, type, proto);if (can0_fd < 0){printf("ERROR");return 1;}addr.can_family = family;if (ioctl(can0_fd, SIOCGIFINDEX, &ifr) < 0){printf("ERROR");return 1;}addr.can_ifindex = ifr.ifr_ifindex;if (bind(can0_fd, (struct sockaddr *)&addr, sizeof(addr)) < 0){printf("ERROR");return 1;}for(i = 0; i < dlc; i++){frame.data[i] = Tx_cnt%34 + i;Rx_frame.data[i] = 0;}frame.can_id = 0x100;frame.can_dlc = dlc;if (extended){frame.can_id &= CAN_EFF_MASK;frame.can_id |= CAN_EFF_FLAG;} else{frame.can_id &= CAN_SFF_MASK;}if (rtr)frame.can_id |= CAN_RTR_FLAG;printf("\n CAN0 transfer id: %d", frame.can_id);printf("\n CAN0 transfer dlc: %d", frame.can_dlc);printf("\n CAN0 transfer Data:\n");for (i = 0; i < frame.can_dlc; i++)printf(" 0x%02x", frame.data[i]);printf("\n");ret1 = 0;for(;;){//sendfor(i = 0; i < dlc; i++){frame.data[i] = Tx_cnt%34 + i;Rx_frame.data[i] = 0;}ret = write(can0_fd, &frame, sizeof(frame));if (ret == -1){printf("write error !! \n");}printf("\n CAN0 transfer Data:\t");for (i = 0; i < frame.can_dlc; i++)printf(" 0x%02x", frame.data[i]);Tx_cnt++;printf("\t Tx: %d \n", Tx_cnt);//rxstruct pollfd fds[] = {{.fd	= can0_fd,.events	= POLLIN,},};err = poll(fds, 1, 10000);switch(err){case -1://出错printf("\n poll read error =%d ", err);break;case 0://超时printf("\n poll read error =%d ", err);break;default:nbytes = read(can0_fd, &Rx_frame, sizeof(Rx_frame));printf("\n CAN0 receive id = %d", Rx_frame.can_id);printf("\n CAN0 receive dlc = %d", Rx_frame.can_dlc);printf("\n CAN0 receive Data:\n");for (i = 0; i < Rx_frame.can_dlc; i++)printf(" 0x%02x", Rx_frame.data[i]);printf("\n");break;}sleep(10);}can_do_stop("can0"); return 0;
}

三、测试结果

CAN0口连接周立功USBCAN-E-mini,连接电脑,测试收发。
在这里插入图片描述

在这里插入图片描述

参考
https://blog.csdn.net/wallace89/article/details/111303439

这篇关于NUC980开发板CAN开发笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/794052

相关文章

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C#图表开发之Chart详解

《C#图表开发之Chart详解》C#中的Chart控件用于开发图表功能,具有Series和ChartArea两个重要属性,Series属性是SeriesCollection类型,包含多个Series对... 目录OverviChina编程ewSeries类总结OverviewC#中,开发图表功能的控件是Char

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof