【C语言】linux内核tcp_write_xmit和tcp_write_queue_purge

2024-03-10 04:36

本文主要是介绍【C语言】linux内核tcp_write_xmit和tcp_write_queue_purge,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

tcp_write_xmit

一、讲解

这个函数 tcp_write_xmit 是Linux内核TCP协议栈中的一部分,其基本作用是发送数据包到网络。这个函数会根据不同情况推进发送队列的头部,确保只要远程窗口有空间,就可以发送数据。
下面是对该函数的一些主要逻辑的中文解释:
1. 初始化:函数开头有一些初始化操作,比如用 tcp_mstamp_refresh(tp) 刷新时间戳,`tcp_mtu_probe(sk)` 尝试路径MTU发现过程(如果适用),以及 max_segs 的计算。
2. 循环发送:接下来,函数进入一个while循环,尝试发送所有已经排队的SKB(socket buffer)。循环的每一次迭代都会尝试发送一个SKB,直到没有更多可以发送的,或者遇到问题而中断。
3. 发送条件检查:在每次尝试发送前,会进行一系列条件检查:
   - tcp_pacing_check(sk) 检查是否应该基于网络拥塞避免算法暂时停止发送。
   - tcp_cwnd_test(tp, skb) 和 tcp_snd_wnd_test(tp, skb, mss_now) 分别检查拥塞窗口(cwnd)和发送窗口(snd_wnd),以确保我们没有发送超出对方TCP流控制和拥塞控制的数据。
4. 确定发送大小:对于要发送的SKB,它会计算出可以一次发送多少数据(TSO分段,即TCP段上合并发送),以及是否应该延迟发送,从而进行网络流量整形。
5. 发送和处理:如果所有条件均符合,就会通过 tcp_transmit_skb(sk, skb, 1, gfp) 将SKB发送到网络。发送后,会进行一些更新,比如更新拥塞窗口相关数据。
6. 结束条件:如果在发送过程中遇到资源限制(如拥塞窗口满了,或者接收窗口满了),就会跳出发送循环。
7. 后处理:函数的最后部分会基于发送情况更新一些计时器,比如记录流控制限制的时间,决定是否触发进一步的丢包探测等。
整个函数的设计关注于什么时候发送数据,以及如何基于当前网络条件(例如拥塞控制、窗口大小等)做出正确的发送决策。这是一个TCP协议中用于管理数据发送的核心路径,确保数据以有效和合理的方式在网络中传输。

二、中文注释

/* 这个函数用于将数据包写入网络,并推进发送队列头部。这个操作发生在* 接收到的确认(ACK)扩展了远程窗口时。** LARGESEND注释:!tcp_urg_mode是过度的限制,实际上,只有从snd_up-64k-mss到snd_up* 这段范围内的帧不能是大型帧。考虑到紧急(URG)数据的使用比较少,这不是一个严重的问题。** 当push_one > 0时,最多发送一个数据包。当push_one == 2时,暂时忽略拥塞窗口(cwnd)的限制,* 强制至多发送一个数据包。** 如果没有在传输中的分段(即所有分段都已确认),且我们有排队的分段,* 但现在由于轻微的发送窗口(SWS)问题或其他问题而无法发送任何分段,* 则返回true。*/
static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,int push_one, gfp_t gfp)
{struct tcp_sock *tp = tcp_sk(sk); // 获取TCP套接字结构体struct sk_buff *skb; // 定义一个套接字缓冲区指针unsigned int tso_segs, sent_pkts; // 定义传输段的数量和已发送的数据包数int cwnd_quota; // 定义拥塞窗口配额int result; // 定义结果变量bool is_cwnd_limited = false, is_rwnd_limited = false; // 定义拥塞窗口和接收窗口限制标记u32 max_segs; // 定义最大段数sent_pkts = 0; // 初始化已发送的数据包数量tcp_mstamp_refresh(tp); // 刷新时间戳if (!push_one) {/* 执行MTU探测 */result = tcp_mtu_probe(sk);if (!result) {return false;} else if (result > 0) {sent_pkts = 1;}}max_segs = tcp_tso_segs(sk, mss_now); // 计算最大可发送的段数while ((skb = tcp_send_head(sk))) { // 遍历发送队列unsigned int limit; // 定义发送限制if (tcp_pacing_check(sk)) // 执行流量整形检查break;tso_segs = tcp_init_tso_segs(skb, mss_now); // 初始化TSO段BUG_ON(!tso_segs); // 如果tso_segs为0,触发BUGif (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {/* 将"skb_mstamp"用作重传计时器的起始点 */tcp_update_skb_after_send(tp, skb);goto repair; // 跳过网络传输}cwnd_quota = tcp_cwnd_test(tp, skb); // 检查拥塞窗口if (!cwnd_quota) {if (push_one == 2)/* 发送一个丢失探针包 */cwnd_quota = 1;elsebreak;}if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {is_rwnd_limited = true; // 判断接收窗口是否限制了发送break;}if (tso_segs == 1) {if (unlikely(!tcp_nagle_test(tp, skb, mss_now,(tcp_skb_is_last(sk, skb) ?nonagle : TCP_NAGLE_PUSH))))break;} else {if (!push_one &&tcp_tso_should_defer(sk, skb, &is_cwnd_limited,&is_rwnd_limited, max_segs))break;}limit = mss_now;if (tso_segs > 1 && !tcp_urg_mode(tp))limit = tcp_mss_split_point(sk, skb, mss_now,min_t(unsigned int,cwnd_quota,max_segs),nonagle);if (skb->len > limit &&unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,skb, limit, mss_now, gfp)))break;if (tcp_small_queue_check(sk, skb, 0)) // 小队列检查,防止发送队列过长break;if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) // 尝试传输skbbreak;
repair:
/* 推进发送队列头部,这个skb已经被发送出去。* 这个调用将增加packets_out的计数。*/tcp_event_new_data_sent(sk, skb);tcp_minshall_update(tp, mss_now, skb); // 更新发送窗口大小sent_pkts += tcp_skb_pcount(skb); // 累加已发送的数据包计数if (push_one) // 如果设置了push_one标志,只发送一个包,然后停止处理break;}if (is_rwnd_limited) // 如果接收窗口限制了速度,则启动相应的计时器tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);else // 否则,停止该计时器tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);if (likely(sent_pkts)) { // 如果发送出去了数据包if (tcp_in_cwnd_reduction(sk)) // 如果TCP处于拥塞窗口减少状态tp->prr_out += sent_pkts; // 更新Proportional Rate Reduction的计数/* 每次尾部丢包事件只发送一个丢包探测。 */if (push_one != 2)tcp_schedule_loss_probe(sk, false); // 计划发送丢包探测is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); // 检查是否受到拥塞窗口的限制tcp_cwnd_validate(sk, is_cwnd_limited); // 验证拥塞窗口限制是否处于激活状态return false;}return !tp->packets_out && !tcp_write_queue_empty(sk); // 如果没有在传输中的数据包,并且写队列不为空,返回true
}

这段代码是Linux内核中用于TCP协议的数据包发送机制的一部分,主要负责在可能的情况下将数据包或数据段发送到网络。在这个过程中,它或许会遇到多种情况,如拥塞窗口(cwnd)限制、接收窗口(rwnd)限制、网络层的流量控制、MTU探测等,并且会相应地更新状态信息(例如发送计时器)和内部计数器。如果确定无法发送数据(例如由于发送窗口关闭等原因),函数可能会返回true,表示有待发送的数据但目前无法发送。在每次有效发送后,它还会安排适当的丢失探测和拥塞窗口更新。

tcp_write_queue_purge

一、讲解

这个函数 tcp_write_queue_purge 是针对 TCP 协议在 Linux 内核网络栈中的一个函数,用于清除指定 socket (sk) 写队列中的所有 sk_buff 结构(即待发送数据包)。
具体功能如下:
1. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
   停止针对 socket sk 的 TCP_CHRONO_BUSY 计时器。该计时器用于衡量 socket 处于忙碌状态的时间。
2. while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
   这是一个 while 循环,从 socket sk 的写队列(sk_write_queue)中逐个取出 sk_buff(数据包)。
3. tcp_skb_tsorted_anchor_cleanup(skb);
   清理与给定 sk_buff 相关的时间排序元数据。
4. sk_wmem_free_skb(sk, skb);
   释放刚从队列中取出的 sk_buff 的内存,并调整 socket sk 的写内存计数器。
5. tcp_rtx_queue_purge(sk);
   清空重传队列,释放所有在 TCP 重传队列中的 sk_buff 结构。
6. INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
   初始化 socket sk 的 ts_sorted_sent_queue 链表头。该链表管理时间排序的已发送数据包队列。
7. sk_mem_reclaim(sk);
   尝试回收 socket sk 的内存,根据当前内存使用情况,可能会释放或重新调整部分内存资源。
8. tcp_clear_all_retrans_hints(tcp_sk(sk));
   清除全部 retrans hint 标记,这些标记用于优化数据包的重传处理。
9. tcp_sk(sk)->packets_out = 0;
   将 socket sk 的 packets_out 计数器重置为 0,这个计数器记录了在飞数据包的数目(在路上但尚未确认的数据包)。
10. inet_csk(sk)->icsk_backoff = 0;
    重置 socket sk 的指数退避计数器 icsk_backoff 到 0。在遇到网络拥堵导致超时重传时,该计数器值会增加。
总体来说,这个函数的作用是清理给定 socket sk 的所有已排队但尚未发送的数据包,确保在某些情况下(例如关闭连接前)发送队列被适当清空,从而释放相关资源。

二、中文注释

void tcp_write_queue_purge(struct sock *sk)
{struct sk_buff *skb;// 停止TCP的计时器(例如,忙时计时器)tcp_chrono_stop(sk, TCP_CHRONO_BUSY);// 循环,一直到写队列为空while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {// 清理已排序发送队列的anchor(锚)信息tcp_skb_tsorted_anchor_cleanup(skb);// 释放skb占用的写缓冲区内存sk_wmem_free_skb(sk, skb);}// 清除重传队列tcp_rtx_queue_purge(sk);// 初始化TCP控制块的已排序发送队列头部INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);// 试图回收sk_buff结构所占用的内存sk_mem_reclaim(sk);// 清除所有用于快速重传的标志tcp_clear_all_retrans_hints(tcp_sk(sk));// 将"出站数据包数量"计数器设置为0tcp_sk(sk)->packets_out = 0;// 将网络传输层的退避级别设为0inet_csk(sk)->icsk_backoff = 0;
}

以上是该函数的中文注释。函数的功能是清理TCP套接字的写队列,释放其中的skb(socket缓冲区),清理重传队列,重置相关的计数器和状态,以便套接字可以被安全地关闭或重置。

这篇关于【C语言】linux内核tcp_write_xmit和tcp_write_queue_purge的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793070

相关文章

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n