高电平复位电路工作原理详解

2024-03-09 15:20

本文主要是介绍高电平复位电路工作原理详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单片机复位电路的作用是:使单片机恢复到起始状态,让单片机的程序从头开始执行,运行时钟处于稳定状态、各种寄存器、端口处于初始化状态等等。目的是让单片机能够稳定、正确的从头开始执行程序。一共分为:高电平复位,低电平复位,按键复位电路,上电复位电路。

### 高电平复位电路

高电平复位电路是指当复位信号为高电平时,单片机被复位。其基本原理是利用一个电路,当输入的复位信号为高电平时,输出一个低电平信号给单片机的复位引脚,使得单片机处于复位状态。

一种简单的高电平复位电路可以是一个 NPN 晶体管和几个电阻组成的电路。当复位信号为高电平时,NPN 晶体管导通,将复位引脚接地,从而使得单片机被复位。

### 低电平复位电路

低电平复位电路与高电平复位电路相反,当复位信号为低电平时,单片机被复位。其原理是当输入的复位信号为低电平时,输出一个高电平信号给单片机的复位引脚,使得单片机处于复位状态。

低电平复位电路的实现可以利用一个 PNP 晶体管和几个电阻组成的电路。当复位信号为低电平时,PNP 晶体管导通,将复位引脚拉高电平,从而使得单片机被复位。

### 按键复位电路

按键复位电路通过按下一个按键来实现单片机的复位。按键复位电路一般由一个按键、一个电阻和一个电容组成。当按键按下时,电容会充电,使得复位引脚达到复位电平,从而使得单片机被复位。

### 上电复位电路

上电复位电路是在单片机上电时进行复位的电路。当单片机上电时,电路会通过一个上电检测电路检测到上电信号,然后输出一个复位信号给单片机的复位引脚,使得单片机被复位。上电复位电路一般由一个电容和一个电阻组成,电容在单片机上电时充电,当电容电压达到一定阈值时,触发复位引脚。

接下来主要讲解一下高电平复位电路工作原理

  • 单片机高电平复位电路1

如上图所示当3.3V上电时候,3.3V通过D1对C2进行充电,可以非常快达到3.3V。但C1是通过R1进行充电,它的充电时间RC。根据电容两端电压不能突变原理,A点的电压从0电平,经过RC时间慢慢上升到3.3V。在B达到3.3V后,因为B点电压高过A点电压,所以Q1导通,所以C点的电压跟B点电压一样,这时候获得高高电平复位。当A点经过RC的充电,电压升到3.3V时候,Q1截止,这个时候因为R3接地,C点的电平就是0V。

掉电的时候:3.3V因为负载比较重,会非常快达到0V电平,这时候C1通过D1放电,会快速达到0V,这时候B点的电压就是3.3V,B点高过A,所以Q1导通,通过R3进行缓慢放电。这个非常关键的事C1要放完电,正常来说倒希望C2一直有电。

补充说明R4,C3的作用是防止瞬间冲击电压损害芯片脚,C3是也有改善芯片管脚抗静电的作用。

  • 单片机高电平复位电路2

当这个电路处于稳态时,电容起到隔离直流的作用,隔离了 +5 V,而左侧的复位按键是弹起状态,下边部分电路就没有电压差的产生,所以按键和电容 C11 以下部分的电位都是和 GND 相等的,也就是 0 V。我们这个单片机是高电平复位,低电平正常工作,所以正常工作的电压是 0 V,没有问题。

我们再来分析从没有电到上电的瞬间,电容 C11 上方电压是 5 V,下方是 0 V,根据我们初中所学的知识,电容 C11 要进行充电,正离子从上往下充电,负电子从 GND 往上充电,这个时候电容对电路来说相当于一根导线,全部电压都加在了 R31 这个电阻上,那么 RST端口位置的电压就是 5 V,随着电容充电越来越多,即将充满的时候,电流会越来越小,那 RST 端口上的电压值等于电流乘以 R31 的阻值,也就会越来越小,一直到电容完全充满后,线路上不再有电流,这个时候 RST 和 GND 的电位就相等了也就是 0 V 了。

  • 单片机高电平复位电路3

我们来看一下高电平上电复位,本质就是RC串联充电电路,在上电的瞬间,由于电容两端电压不能突变,上电后的一瞬间电容等效为短路,电容C11充电,充电电流在电阻上形成的电压为高电平;单片机复位,几个毫秒之后,电容充电完毕,电路为断路,电流为0,电阻两端电压近似于0V,这时RST就为低电平。单片机将进入正常工作状态。电容充电时间T/复位持续时间:T=(1/9)*R*C

参考:百度安全验证

这篇关于高电平复位电路工作原理详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791083

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装