手撕BeamSearch代码

2024-03-08 22:44
文章标签 代码 beamsearch

本文主要是介绍手撕BeamSearch代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目录

  1. 手撕beam search
  2. transformer generate() 解读

二、实现

  1. 手撕beam search
def pred(input):batch,seq_len=input.shapegenerate=torch.randn(size=(batch,1,10))return generatedef beam_search(input_ids,max_length,num_beams):batch=input_ids.shape[0]#输入扩展expand_size=num_beamsexpanded_return_idx = (torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device))input_ids = input_ids.index_select(0, expanded_return_idx)print(input_ids)batch_beam_size,cur_len=input_ids.shapebeam_scores=torch.zeros(size=(batch,num_beams),dtype=torch.float,device=input_ids.device)beam_scores[:,1:]=-1e9beam_scores=beam_scores.view(size=(batch*num_beams,))next_tokens=torch.zeros(size=(batch,num_beams),dtype=torch.long,device=input_ids.device)next_indices=torch.zeros(size=(batch,num_beams),dtype=torch.long,device=input_ids.device)while cur_len<max_length:logits=pred(input_ids)    #batch,seq_len,vocabnext_token_logits=logits[:,-1,:]  #当前时刻的输出#归一化next_token_scores=F.log_softmax(next_token_logits,dim=-1)   # (batch_size * num_beams, vocab_size)#求概率next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores)  # 当前概率+先前概率# reshape for beam searchvocab_size = next_token_scores.shape[-1]next_token_scores = next_token_scores.view(batch, num_beams * vocab_size)# 当前时刻的token 得分,  token_idnext_token_scores, next_tokens = torch.topk(next_token_scores, num_beams, dim=1, largest=True, sorted=True)next_indices = next_tokens // vocab_size  #对应的beam_idnext_tokens = next_tokens % vocab_size    #对应的indices#集束搜索核心def process(input_ids,next_scores,next_tokens,next_indices):batch_size=3group_size=3next_beam_scores = torch.zeros((batch_size, num_beams), dtype=next_scores.dtype)next_beam_tokens = torch.zeros((batch_size, num_beams), dtype=next_tokens.dtype)next_beam_indices = torch.zeros((batch_size,num_beams), dtype=next_indices.dtype)for batch_idx in range(batch_size):beam_idx=0for beam_token_rank, (next_token, next_score, next_index) in enumerate(zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])):batch_beam_idx=batch_idx*num_beams+next_indexnext_beam_scores[batch_idx, beam_idx] = next_score      #当前路径得分next_beam_tokens[batch_idx, beam_idx] = next_token      #当前时刻的tokennext_beam_indices[batch_idx, beam_idx] = batch_beam_idx  #先前对应的idbeam_idx += 1return next_beam_scores.view(-1), next_beam_tokens.view(-1), next_beam_indices.view(-1)beam_scores, beam_next_tokens, beam_idx=process(input_ids,next_token_scores,next_tokens,next_indices)# 更新输入, 找到对应的beam_idx, 选择的tokens, 拼接为新的输入      #(batch*beam,seq_len)input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)cur_len = cur_len + 1#输出return input_ids,beam_scoresif __name__ == '__main__':input_ids=torch.randint(0,100,size=(3,1))print(input_ids)input_ids,beam_scores=beam_search(input_ids,max_length=10,num_beams=3)print(input_ids)

参考:transformers generate实现。

  1. transformer generate() 解读
@torch.no_grad()
def generate(          #模型入口self,inputs: Optional[torch.Tensor] = None,generation_config: Optional[GenerationConfig] = None,logits_processor: Optional[LogitsProcessorList] = None,stopping_criteria: Optional[StoppingCriteriaList] = None,prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,synced_gpus: Optional[bool] = None,assistant_model: Optional["PreTrainedModel"] = None,streamer: Optional["BaseStreamer"] = None,negative_prompt_ids: Optional[torch.Tensor] = None,negative_prompt_attention_mask: Optional[torch.Tensor] = None,**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
# 10. go into different generation modes
# 根据不同的生产模型进行解码生产
if generation_mode == GenerationMode.ASSISTED_GENERATION:...#以beam search 为例子
elif generation_mode == GenerationMode.BEAM_SEARCH:     #beam search 算法# 11. prepare beam search scorer    #参数初始化beam_scorer = BeamSearchScorer(batch_size=batch_size,num_beams=generation_config.num_beams,device=inputs_tensor.device,length_penalty=generation_config.length_penalty,do_early_stopping=generation_config.early_stopping,num_beam_hyps_to_keep=generation_config.num_return_sequences,max_length=generation_config.max_length,)#将输入进行扩展# 12. interleave input_ids with `num_beams` additional sequences per batchinput_ids, model_kwargs = self._expand_inputs_for_generation(input_ids=input_ids,expand_size=generation_config.num_beams,is_encoder_decoder=self.config.is_encoder_decoder,**model_kwargs,)# 13. run beam search     核心,beam search 算法解码result = self.beam_search(input_ids,beam_scorer,logits_processor=prepared_logits_processor,stopping_criteria=prepared_stopping_criteria,pad_token_id=generation_config.pad_token_id,eos_token_id=generation_config.eos_token_id,output_scores=generation_config.output_scores,output_logits=generation_config.output_logits,return_dict_in_generate=generation_config.return_dict_in_generate,synced_gpus=synced_gpus,sequential=generation_config.low_memory,**model_kwargs,)
def beam_search(self, input_ids, encoder_output, attention_mask, num_beams, max_length, pad_token_id: int, eos_token_id: int
):batch_size = self.beam_scorer.batch_size    #扩展前batch sizenum_beams = self.beam_scorer.num_beamsbatch_beam_size, cur_len = input_ids.shape     #扩展后batchassert (num_beams * batch_size == batch_beam_size), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)beam_scores[:, 1:] = -1e9beam_scores = beam_scores.view((batch_size * num_beams,))next_tokens = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device)next_indices = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device)past: List[torch.Tensor] = []while cur_len < max_length:#生成相应logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past)    #迭代输出next_token_logits = logits[:, -1, :]    #当前时刻输出# adjust tokens for Bart, *e.g.*    cur_len=1 与 max_length 输出调整next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len, max_length=max_length)#归一化next_token_scores = F.log_softmax(next_token_logits, dim=-1)  # (batch_size * num_beams, vocab_size)    #归一化# pre-process distributionnext_token_scores = self.logits_processor(input_ids, next_token_scores)next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores)   #当前概率+先前概率# reshape for beam searchvocab_size = next_token_scores.shape[-1]next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)#取前beam 个路径next_token_scores, next_tokens = torch.topk(next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True)next_indices = next_tokens // vocab_sizenext_tokens = next_tokens % vocab_size#获取对应路径,路径得分,对应的id   核心,不同beam search 不同点beam_scores, beam_next_tokens, beam_idx = self.beam_scorer.process(input_ids,next_token_scores,next_tokens,next_indices,pad_token_id=pad_token_id,eos_token_id=eos_token_id,)#更新输入, 找到对应的beam_idx, 选择的tokens, 拼接为新的输入      #(batch*beam,seq_len)input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)cur_len = cur_len + 1if len(past) > 0:past = self._reorder_cache(past, beam_idx)if self.beam_scorer.is_done():break#选择最优的输出,输出标准化sequences, sequence_scores = self.beam_scorer.finalize(input_ids,beam_scores,next_tokens,next_indices,pad_token_id=pad_token_id,eos_token_id=eos_token_id,)return sequences

这篇关于手撕BeamSearch代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788650

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时