P9889 [ICPC2018 Qingdao R] Plants vs. Zombies 题解 二分+贪心

2024-03-08 07:20

本文主要是介绍P9889 [ICPC2018 Qingdao R] Plants vs. Zombies 题解 二分+贪心,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[ICPC2018 Qingdao R] Plants vs. Zombies

传送门

题面翻译

给定 n n n 个植物和 m m m 的步数限制,每个植物在位置 1 … n 1\dots n 1n 上。你初始时在位置 0 0 0,每次可以移动到相邻的位置上。

每次设你走完一步后到达的位置是 i i i,则会使得这个位置的植物的高度增加 a i a_i ai。设 d i d_i di 为走完 m m m 步后位置 i i i 的植物高度,求出一个最优的走法使得 min ⁡ 1 ≤ i ≤ n d i \min\limits_{1 \le i \le n} d_i 1inmindi 最大。

2 ≤ n ≤ 1 0 5 2\leq n\leq 10 ^ 5 2n105 0 ≤ m ≤ 1 0 12 0\leq m\leq 10 ^ {12} 0m1012 1 ≤ a i ≤ 1 0 5 1\leq a_i\leq 10 ^ 5 1ai105 ∑ n ≤ 1 0 6 \sum n\leq 10 ^ 6 n106

题目描述

BaoBao and DreamGrid are playing the game Plants vs. Zombies \textit{Plants vs. Zombies} Plants vs. Zombies. In the game, DreamGrid grows plants to defend his garden against BaoBao’s zombies.

Plants vs. Zombies(?) (Image from pixiv. ID: 21790160; Artist: socha) \textit{Plants vs. Zombies(?)} \\ \textit{(Image from pixiv. ID: 21790160; Artist: socha)} Plants vs. Zombies(?)(Image from pixiv. ID: 21790160; Artist: socha)

There are n n n plants in DreamGrid’s garden arranged in a line. From west to east, the plants are numbered from 1 to n n n and the i i i-th plant lies i i i meters to the east of DreamGrid’s house. The i i i-th plant has a defense value of d i d_i di and a growth speed of a i a_i ai. Initially, d i = 0 d_i = 0 di=0 for all 1 ≤ i ≤ n 1 \le i \le n 1in.

DreamGrid uses a robot to water the plants. The robot is in his house initially. In one step of watering, DreamGrid will choose a direction (east or west) and the robot moves exactly 1 meter along the direction. After moving, if the i i i-th plant is at the robot’s position, the robot will water the plant and a i a_i ai will be added to d i d_i di. Because the water in the robot is limited, at most m m m steps can be done.

The defense value of the garden is defined as min ⁡ { d i ∣ 1 ≤ i ≤ n } \min\{d_i | 1 \le i \le n\} min{di∣1in}. DreamGrid needs your help to maximize the garden’s defense value and win the game.

  • Each time the robot MUST move before watering a plant;
  • It’s OK for the robot to move more than n n n meters to the east away from the house, or move back into the house, or even move to the west of the house.

输入格式

There are multiple test cases. The first line of the input contains an integer T T T, indicating the number of test cases. For each test case:

The first line contains two integers n n n and m m m ( 2 ≤ n ≤ 1 0 5 2 \le n \le 10^5 2n105, 0 ≤ m ≤ 1 0 12 0 \le m \le 10^{12} 0m1012), indicating the number of plants and the maximum number of steps the robot can take.

The second line contains n n n integers a 1 , a 2 , . . . , a n a_1, a_2, ... , a_n a1,a2,...,an ( 1 ≤ a i ≤ 1 0 5 1 \le a_i \le 10^5 1ai105), where a i a_i ai indicates the growth speed of the i i i-th plant.

It’s guaranteed that the sum of n n n in all test cases will not exceed 1 0 6 10^6 106.

输出格式

For each test case output one line containing one integer, indicating the maximum defense value of the garden DreamGrid can get.

样例 #1

样例输入 #1

2
4 8
3 2 6 6
3 9
10 10 1

样例输出 #1

6
4

提示

In the explanation below, E indicates that the robot moves exactly 1 meter to the east from his current position, and W indicates that the robot moves exactly 1 meter to the west from his current position.

For the first test case, a candidate direction sequence is { E , E , W , E , E , W , E , E } \{E, E, W, E, E, W, E, E\} {E,E,W,E,E,W,E,E}, so that we have d = { 6 , 6 , 12 , 6 } d = \{6,6,12,6\} d={6,6,12,6} after the watering.

For the second test case, a candidate direction sequence is { E , E , E , E , W , E , W , E , W } \{E, E, E, E, W, E, W, E, W\} {E,E,E,E,W,E,W,E,W}, so that we have d = { 10 , 10 , 4 } d = \{10, 10, 4\} d={10,10,4} after the watering.

注明

以上来自洛谷。 以上来自洛谷。 以上来自洛谷。

解题思路

题目中让我们求最小值最大,并具有单调性,所以可以二分答案。对于二分答案,这里不细讲。

以下为验证函数的写法:

  • 先让一个数组 T o n g Tong Tong 满足 T o n g i × d i ≥ m i d d l e Tong_i ×d_i \ge middle Tongi×dimiddle
  • 对于 T o n g i ≥ 1 Tong_i \ge 1 Tongi1 都需要在 T o n g i Tong_i Tongi T o n g i + 1 Tong_{i+1} Tongi+1 之间走 2 × T o n g i − 1 2\times Tong_i −1 2×Tongi1 次才能满足条件,而 T o n g i + 1 Tong_{i+1} Tongi+1 项也要去掉 T o n g i − 1 Tong_i −1 Tongi1 次;
  • 若走的总次数 C o u n t Count Count 满足 C o u n t ≥ m Count \ge m Countm了,就返回假,否则为真。

附上贪心证明(Ta人博客,尽量点赞)。

AC Code

#include<bits/stdc++.h>
using namespace std;
char buf[1048576], *p1, *p2;
template<typename T>inline void Super_Quick_Read(T &x) {bool f = 1;x = 0;char ch = (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? 0 : *p1++);while (ch < '0' || ch > '9') {if (ch == '-') f = !f;ch = (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? 0 : *p1++);}while (ch >= '0' && ch <= '9')x = (x << 1) + (x << 3) + (ch ^ 48), ch = (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? 0 : *p1++);x = (f ? x : -x);return;
}
template<typename T>inline void Quick_Write(T x) {if (x < 0) putchar('-'), x = -x;if (x > 9) Quick_Write(x / 10);putchar(x % 10 + '0');return;
}
int n;
long long m, a[100001];
long long Tong[100001];
long long Answer;
inline bool Check(long long x) {long long _count = 0;for (register int i = 1; i <= n; ++i) Tong[i] = ceil(1.0 * x / a[i]);for (register int i = 1; i <= n; ++i) {if (Tong[i] <= 0) {++_count;continue;}_count += Tong[i] * 2 - 1, Tong[i + 1] -= Tong[i] - 1;if (_count > m) return 0;}return 1;
}
signed main() {int T;Super_Quick_Read(T);while (T--) {Super_Quick_Read(n), Super_Quick_Read(m);for (register int i = 1; i <= n; ++i) Super_Quick_Read(a[i]);long long left = 0, right = LONG_LONG_MAX, middle;while (left <= right) {middle = (left + right) >> 1;if (Check(middle)) left = middle + 1, Answer = middle;else right = middle - 1;}Quick_Write(Answer), puts("");}return 0;
}

知道复制代码会 CE,为什么不自己写呢?

这篇关于P9889 [ICPC2018 Qingdao R] Plants vs. Zombies 题解 二分+贪心的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786416

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

usaco 1.3 Barn Repair(贪心)

思路:用上M块木板时有 M-1 个间隙。目标是让总间隙最大。将相邻两个有牛的牛棚之间间隔的牛棚数排序,选取最大的M-1个作为间隙,其余地方用木板盖住。 做法: 1.若,板(M) 的数目大于或等于 牛棚中有牛的数目(C),则 目测 给每个牛牛发一个板就为最小的需求~ 2.否则,先对 牛牛们的门牌号排序,然后 用一个数组 blank[ ] 记录两门牌号之间的距离,然后 用数组 an

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

poj 3190 优先队列+贪心

题意: 有n头牛,分别给他们挤奶的时间。 然后每头牛挤奶的时候都要在一个stall里面,并且每个stall每次只能占用一头牛。 问最少需要多少个stall,并输出每头牛所在的stall。 e.g 样例: INPUT: 51 102 43 65 84 7 OUTPUT: 412324 HINT: Explanation of the s

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

poj 3104 二分答案

题意: n件湿度为num的衣服,每秒钟自己可以蒸发掉1个湿度。 然而如果使用了暖炉,每秒可以烧掉k个湿度,但不计算蒸发了。 现在问这么多的衣服,怎么烧事件最短。 解析: 二分答案咯。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <c

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(