Docker在手,天下我有,在Win10系统下利用Docker部署Gunicorn+Flask打造独立镜像

本文主要是介绍Docker在手,天下我有,在Win10系统下利用Docker部署Gunicorn+Flask打造独立镜像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

现在我们利用Docker将一个企业级项目完整项目部署起来,为什么用Docker呢?原因很简单,这种容器技术可以将整个项目用单个容器装起来,仅仅只需要维护一个简单的配置文件就告诉电脑每次部署要把什么东西装进容器,甚至把这个过程自动化,部署流程就会变得简单、方便。

简单理解就是Docker的镜像就类似《精灵宝可梦》中小智手里的精灵球,我们的项目就类似那些宠物小精灵,当我们开发完毕就可以利用DockerFile对项目进行打包制作成镜像(小精灵被吸入精灵球),部署时就可以理解为小精灵被释放出来进行战斗(通过打包好的镜像运行容器),而Docker的仓库则提高了镜像的便捷性,可以让我们随时随地只要联网就可以使用自己的镜像(相当于小智不用随身携带精灵球,而是通过网络随时下载需要的精灵球)。

同时Docker其强大的跨平台特性,可以让我们在任何系统下部署项目,包括经常令人诟病的Windows,值得一提的是本次在Win10下部署项目的流程同样适用于Centos、Mac os、Ubuntu等系统,其兼容性可见一斑。

关于Win10如何折腾和配置Docker,请参照这篇文章:win10系统下把玩折腾DockerToolBox以及更换国内镜像源(各种神坑)

首先简单看一下项目结构:

manage.py是项目的入口文件,这里我们利用Sockert.io让Flask支持Websocket

from flask import Flask  
from flask_sqlalchemy import SQLAlchemy  
import pymysql  
from flask import request,jsonify  
from flask_cors import CORS  
from flask_socketio import SocketIO,send,emit,join_room, leave_room  
import urllib.parse  
import user_view  from celery import Celery  
from datetime import timedelta  pymysql.install_as_MySQLdb()  app = Flask(__name__)  
app.config["SQLALCHEMY_DATABASE_URI"] = "mysql://root:root@localhost:3306/md"  
app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True  
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True  app.config['BROKER_URL'] = 'redis://localhost:6379'  
app.config['CELERY_RESULT_BACKEND'] = 'redis://localhost:6379'  
app.config['CELERY_ACCEPT_CONTENT'] = ['json', 'pickle']  
app.config['REDIS_URL'] = 'redis://localhost:6379'  
app.config['JSON_AS_ASCII'] = False  CORS(app,cors_allowed_origins="*")  app.register_blueprint(user_view.user)  db = SQLAlchemy(app)  socketio = SocketIO(app,cors_allowed_origins='*',async_mode="threading",message_queue=app.config['CELERY_RESULT_BACKEND'])  celery = Celery(app.name)  
celery.conf.update(app.config)  celery.conf.CELERYBEAT_SCHEDULE = {  "test":{  "task":"get_cron",  "schedule":timedelta(seconds=10)  }  }  @celery.task(name="get_cron")  
def get_cron():  get_sendback.delay()  @celery.task()  
def get_sendback():  socketio.emit('sendback','message',broadcast=True)  @app.route('/task')  
def start_background_task():  get_sendback.delay()  return '开始'  @app.route('/',methods=['GET','POST',"PUT","DELETE"])  
def hello_world():  #res = db.session.execute("insert into user (`username`) values ('123') ")  # res = db.session.execute(" select id,username from user ").fetchall()  # data = request.args.get("id")  # #data = request.form.get("id")  # print(data)  # print(res)  # #return 'Hello Flask'  # return jsonify({'result': [dict(row) for row in res]})  return jsonify({'message':'你好,Docker'})  @socketio.on('join')  
def on_join(data):  username = 'user1'  room = 'room1'  join_room(room)  send(username + ' has entered the room.', room=room)  @socketio.on('message')  
def handle_message(message):  message = urllib.parse.unquote(message)  print(message)  send(message,broadcast=True)  @socketio.on('connect', namespace='/chat')  
def test_connect():  emit('my response', {'data': 'Connected'})  @socketio.on('disconnect', namespace='/chat')  
def test_disconnect():  print('Client disconnected')  @app.route("/sendback",methods=['GET'])  
def sendback():  socketio.emit('sendback','message')  return 'ok'  if __name__ == '__main__':  socketio.run(app,debug=True,host="0.0.0.0",port=5000)

接下来使用Gunicorn+gevent来运行Flask项目,Gunicorn服务器作为wsgi app的容器,能够与各种Web框架兼容(flask,django等),得益于gevent等技术,使用Gunicorn能够在基本不改变wsgi app代码的前提下,大幅度提高wsgi app的性能。那到底怎么提升性能?说简单点,Gunicorn 默认的网络模型是 select ,当我们把worker 替换成 gevent 后,则改为 epoll 监听模型,关于select、poll、epoll请参照这篇文章:关于Tornado:真实的异步和虚假的异步,这里不再赘述。

安装相应的库

pip install gunicorn gevent --user

编辑项目目录下的gunicorn.conf.py

workers = 3    # 进程数  
worker_class = "gevent"   # 异步模式  
bind = "0.0.0.0:5000"

由于Gunicorn并不支持Windows环境,所以只需要写好配置,不需要运行。

编辑项目目录下的requirements.txt文件,这里面都是我们项目所依赖的库

flask==1.0.2  
flask-cors  
flask-socketio  
flask-sqlalchemy  
pymysql  
celery  
gunicorn  
gevent  
redis==3.3.11

随后在项目目录下创建一个 Dockerfile 文件,这个文件可以理解为打包镜像的脚本,你需要这个镜像做什么,就把任务写到脚本中,Docker通过执行这个脚本来打包镜像

FROM python:3.6  
WORKDIR /Project/myflask  COPY requirements.txt ./  
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple  COPY . .ENV LANG C.UTF-8CMD ["gunicorn", "manage:app", "-c", "./gunicorn.conf.py"]

可以看到,我们项目的镜像首先基于python3.6这个基础镜像,然后声明项目目录在/Project/myflask中,拷贝依赖表,之后安装相应的依赖,这里在安装过程中我们指定了国内的源用来提高打包速度,最后利用gunicorn运行项目,值得一提的是,ENV LANG C.UTF-8是为了声明Docker内部环境中的编码,防止中文乱码问题。

最后我们就可以愉快的打包整个项目了,在项目根目录下执行

docker build -t 'myflask' .

此时看到Docker通过读取Dockerfile文件来下载所需的基础镜像和依赖库,这里一定要指定Docker的下载源,否则速度会非常缓慢,打包好的镜像文件大概有1g左右。

下载结束之后,可以看到myflask这个镜像已经静静躺在镜像库中了,运行

docker images

命令来查看

然后我们就可以利用这个镜像来通过容器跑Flask项目了,运行命令

docker run -it --rm -p 5000:5000 myflask

这里的命令是通过端口映射把docker内部的端口5000映射到宿主机的5000端口上,后面的参数是镜像名称。我们看到,在Win10下,已经不可思议的通过Gunicorn把Flask跑起来了,这在之前没有Docker技术之前是不可想象的。

通过网址访问一下,这里注意一点,就是Windows系统下,访问Docker容器需要通过分配的ip来访问,而不是我们常用的localhost。

完全没有任何问题。

结语:到这里我们的 Docker+Flask + Gunicorn就部署完毕了,将这个镜像上传Dockerhub仓库,在任何时间、任何地点、任何系统上,只要连着网、只要我们想,就都可以在短短1分钟之内部署好我们的项目,这就是Docker技术对开发人员最好的馈赠。最后奉上项目地址:https://gitee.com/QiHanXiBei/myflask

这篇关于Docker在手,天下我有,在Win10系统下利用Docker部署Gunicorn+Flask打造独立镜像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785991

相关文章

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun

基于Python打造一个全能文本处理工具

《基于Python打造一个全能文本处理工具》:本文主要介绍一个基于Python+Tkinter开发的全功能本地化文本处理工具,它不仅具备基础的格式转换功能,更集成了中文特色处理等实用功能,有需要的... 目录1. 概述:当文本处理遇上python图形界面2. 功能全景图:六大核心模块解析3.运行效果4. 相

Android Studio 配置国内镜像源的实现步骤

《AndroidStudio配置国内镜像源的实现步骤》本文主要介绍了AndroidStudio配置国内镜像源的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、修改 hosts,解决 SDK 下载失败的问题二、修改 gradle 地址,解决 gradle

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整