CNN | 02实现几何图形分类

2024-03-07 17:58

本文主要是介绍CNN | 02实现几何图形分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文及数据集

https://github.com/microsoft/ai-edu/tree/master/%E5%9F%BA%E7%A1%80%E6%95%99%E7%A8%8B/A2-%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%9F%BA%E6%9C%AC%E5%8E%9F%E7%90%86/%E7%AC%AC8%E6%AD%A5%20-%20%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C

2 实现几何图形分类

2.1 提出问题

有一种儿童玩具:在一个平板上面有三种形状的洞:圆形、三角形、正方形,让小朋友们拿着这三种形状的积木从对应的洞中穿过那个平板就算成功。如果形状不对是穿不过去的,比如一个圆形的积木无法穿过一个方形的洞。这就要求儿童先学会识别几何形状,学会匹配,然后手眼脑配合才能成功。

人工智能现在还是初期阶段,它能否达到3岁儿童的能力呢?先看一下图18-21所示的样本数据。

图18-21 样本数据

一共有5种形状:圆形、菱形、直线、矩形、三角形。上图中列出了一些样本,由于图片尺寸是28x28的灰度图,所以在放大显示后可以看到很多锯齿,读者可以忽略。需要强调的是,每种形状的尺寸和位置在每个样本上都是有差异的,它们的大小和位置都是随机的,比如圆形的圆心位置和半径都是不一样的,还有可能是个椭圆。

其实二维几何形状识别是一个经典的话题了,如果不用神经网络的话,用一些传统的算法已经实现了,有兴趣的读者可以查询相关的知识,比如OpenCV库中就提供了一套方法。

2.2 用前馈神经网络解决问题

我们下面要考验一下神经网络的能力。我们先用前面学过的全连接网络来解决这个问题,搭建一个三层的网络如下:

def dnn_model():num_output = 5max_epoch = 50batch_size = 16learning_rate = 0.1params = HyperParameters_4_2(learning_rate, max_epoch, batch_size,net_type=NetType.MultipleClassifier,init_method=InitialMethod.MSRA,optimizer_name=OptimizerName.SGD)net = NeuralNet_4_2(params, "pic_dnn")f1 = FcLayer_2_0(784, 128, params)net.add_layer(f1, "f1")r1 = ActivationLayer(Relu())net.add_layer(r1, "relu1")f2 = FcLayer_2_0(f1.output_size, 64, params)net.add_layer(f2, "f2")r2 = ActivationLayer(Relu())net.add_layer(r2, "relu2")f3 = FcLayer_2_0(f2.output_size, num_output, params)net.add_layer(f3, "f3")s3 = ClassificationLayer(Softmax())net.add_layer(s3, "s3")return net

样本数据为28x28的灰度图,所以我们要把它展开成1x784的向量,第一层用128个神经元,第二层用64个神经元,输出层5个神经元接Softmax分类函数。

最后可以得到如下训练结果。

图18-22 训练过程中损失函数值和准确度的变化

在测试集上得到的准确度是89.8%,这已经超出笔者的预期了,本来猜测准确度会小于80%。有兴趣的读者可以再精调一下这个前馈神经网络网络,看看是否可以得到更高的准确度。

2.3 用卷积神经网络解决问题

下面我们来看看卷积神经网络能不能完成这个工作。首先搭建网络模型如下:

def cnn_model():num_output = 5max_epoch = 50batch_size = 16learning_rate = 0.1params = HyperParameters_4_2(learning_rate, max_epoch, batch_size,net_type=NetType.MultipleClassifier,init_method=InitialMethod.MSRA,optimizer_name=OptimizerName.SGD)net = NeuralNet_4_2(params, "shape_cnn")c1 = ConvLayer((1,28,28), (8,3,3), (1,1), params)net.add_layer(c1, "c1")r1 = ActivationLayer(Relu())net.add_layer(r1, "relu1")p1 = PoolingLayer(c1.output_shape, (2,2), 2, PoolingTypes.MAX)net.add_layer(p1, "p1") c2 = ConvLayer(p1.output_shape, (16,3,3), (1,0), params)net.add_layer(c2, "c2")r2 = ActivationLayer(Relu())net.add_layer(r2, "relu2")p2 = PoolingLayer(c2.output_shape, (2,2), 2, PoolingTypes.MAX)net.add_layer(p2, "p2") params.learning_rate = 0.1f3 = FcLayer_2_0(p2.output_size, 32, params)net.add_layer(f3, "f3")bn3 = BnLayer(f3.output_size)net.add_layer(bn3, "bn3")r3 = ActivationLayer(Relu())net.add_layer(r3, "relu3")f4 = FcLayer_2_0(f3.output_size, num_output, params)net.add_layer(f4, "f4")s4 = ClassificationLayer(Softmax())net.add_layer(s4, "s4")return net

表18-2展示了模型中各层的作用和参数。

表18-2 模型各层的作用和参数

ID类型参数输入尺寸输出尺寸
1卷积8x3x3, S=1,P=11x28x288x28x28
2激活Relu8x28x288x28x28
3池化2x2, S=2, Max8x28x288x14x14
4卷积16x3x3, S=18x14x1416x12x12
5激活Relu16x12x1216x12x12
6池化2x2, S=2, Max16x6x616x6x6
7全连接3257632
8归一化3232
9激活Relu3232
10全连接5325
11分类Softmax55

经过50个epoch的训练后,我们得到的结果如图18-23。

图18-23 训练过程中损失函数值和准确度的变化

以下是打印输出的最后几行:

......
epoch=49, total_iteration=14099
loss_train=0.002093, accuracy_train=1.000000
loss_valid=0.163053, accuracy_valid=0.944000
time used: 259.32207012176514
testing...
0.935
load parameters
0.96

可以看到我们在测试集上得到了96%的准确度,比前馈神经网络模型要高出很多,这也证明了卷积神经网络在图像识别上的能力。

图18-24是部分测试集中的测试样本的预测结果。

图18-24 测试结果

绝大部分样本预测是正确的,只有最后一个样本,看上去应该是一个很扁的三角形,被预测成了菱形。

2.4 形状分类可视化解释

图18-25 可视化解释

参看图18-25,表18-3解释了8个卷积核的作用。

表18-3 8个卷积核的作用

卷积核序号作用直线三角形菱形矩形圆形
1左侧边缘01011
2大色块区域01111
3左上侧边缘01101
445度短边11101
5右侧边缘、上横边00011
6左上、右上、右下01101
7左边框和右下角00011
8左上和右下,及背景00101

表18-3中,左侧为卷积核的作用,右侧为某个特征对于5种形状的判别力度,0表示该特征无法找到,1表示可以找到该特征。

  1. 比如第一个卷积核,其作用为判断是否有左侧边缘,那么第一行的数据为[0,1,0,1,1],表示对直线和菱形来说,没有左侧边缘特征,而对于三角形、矩形、圆形来说,有左侧边缘特征。这样的话,就可以根据这个特征把5种形状分为两类:

    • A类有左侧边缘特征:三角形、矩形、圆形
    • B类无左侧边缘特征:直线、菱形
  2. 再看第二个卷积核,是判断是否有大色块区域的,只有直线没有该特征,其它4种形状都有。那么看第1个特征的B类种,包括直线、菱形,则第2个特征就可以把直线和菱形分开了。

  3. 然后我们只关注A类形状,看第三个卷积核,判断是否有左上侧边缘,对于三角形、矩形、圆形的取值为[1,0,1],即矩形没有左上侧边缘,这样就可以把矩形从A类中分出来。

  4. 对于三角形和圆形,卷积核5、7、8都可以给出不同的值,这就可以把二者分开了。

当然,神经网络可能不是按照我们分析的顺序来判定形状的,这只是其中的一种解释路径,还可以有很多其它种路径的组合,但最终总能够把5种形状分开来。

代码位置

ch18, Level2

思考和练习

  1. 我们使用了3x3的卷积核,如果用5x5的卷积核,但是在其它参数不变的情况下,其效果会不会更好?
  2. 可以建立一个数据集,只包括正圆、椭圆、正方形、矩形等四种形状,看看卷积神经网络是不是能分辨出来。

这篇关于CNN | 02实现几何图形分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784348

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一