RK DVP NVP6158配置 学习

2024-03-05 16:04
文章标签 配置 学习 rk dvp nvp6158

本文主要是介绍RK DVP NVP6158配置 学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NVP6158简介

       NVP6158C是一款4通道通用RX,提供高质量图像的芯片。它接受来自摄像机和其他视频信号的独立4通道通用输入来源。它将4通道通用1M至8M 7.5P视频格式数字化并解码为代表8位ITU-R BT.656/1120 4:2:2格式的数字分量视频,并将单独的BT.601格式与27/36/37.125MHz同步,54/72/74.25MHz和108/144/148.5/297MHz多路复用。54/72/74.25/108/144/148.5/297MHz复用功能可用,因为它在时钟范围内锁相环NVP6158C包括4通道模拟处理电路,包括抗混叠滤波器、ADC、钳位和均衡器滤波器。采用自适应高性能梳状滤波器和垂直峰值滤波器,获得了最佳的图像质量。它还支持可编程的饱和度、色调、亮度、对比度以及CTI、可编程峰值滤波器和各种补偿滤波器等多种功能。

RK DVP简介:

     


DVP(Digital Video Port) 是传统的sensor输出接口,采用并行输出方式,d数据位宽有8bit、10bit、12bit、16bit,是CMOS电平信号(重点是非差分信号),PCLK最大速率为96MHz,接口如下图:

PCLK:pixel clock ,像素时钟,每个时钟对应一个像素数据;
HSYNC:horizonal synchronization,行同步信号
VSYNC:vertical synchronization,帧同步信号;
DATA:像素数据,视频数据,具体位宽要看ISP是否支持;
XCLK:或者MCLK,ISP芯片输出给驱动sensor的时钟;
SCL,SDA:IIC用来读写sensor的寄存器,配置sensor。

NVP6158 与 RK3568 DVP连接相关原理图:

设备树配置:

&rkcif { status = "okay"; memory-region = <&cif_reserved>; };
&rkcif_dvp { status = "okay"; ports { #address-cells = <1>; #size-cells = <0>;port@0 { #address-cells = <1>; #size-cells = <0>; /* Parallel bus endpoint */ dvp_in_bcam1: endpoint@1 { reg = <1>; remote-endpoint = <&nvp6158_out>; bus-width = <16>; }; }; }; 
};	
nvp6158: nvp6158@30 { compatible = "nvp6158-v4l2"; status = "okay";reg = <0x30>; clocks = <&cru CLK_CIF_OUT>; clock-names = "xvclk"; power-domains = <&power RK3568_PD_VI>; pinctrl-names = "default"; pinctrl-0 = <&cif_clk &cif_dvp_clk &cif_dvp_bus16>; //pinctrl-0 = <&cif_dvp_clk &cif_dvp_bus8 &cif_dvp_bus16>;pwr-gpios = <&gpio0 RK_PC4 GPIO_ACTIVE_HIGH>; //pwr2-gpios = <&gpio4 RK_PC7 GPIO_ACTIVE_HIGH>;/* 360 camera */ rst-gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>; /*rst2-gpios = <&gpio2 RK_PC5 GPIO_ACTIVE_HIGH>;*/ /*pwdn-gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>;*/ /*pwdn2-gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>;*/ rockchip,camera-module-index = <0>; rockchip,camera-module-facing = "back"; rockchip,camera-module-name = "default"; rockchip,camera-module-lens-name = "default"; rockchip,dvp_mode = "BT1120"; //BT656 or BT1120 or BT656_TEST rockchip,channel_nums = <4>; //channel nums, 1/2/4 rockchip,dual_edge = <0>; // pclk dual edge, 0/1 rockchip,default_rect= <1920 1080>; // default resolution port {nvp6158_out: endpoint { remote-endpoint = <&dvp_in_bcam1>; }; }; };

clocks = <&cru CLK_CIF_OUT>; //走GPIO CIF时钟 配置为是27M

 clock-names = "xvclk";

	nvp6158->xvclk = devm_clk_get(dev, "xvclk");if (IS_ERR(nvp6158->xvclk)) {dev_err(dev, "Failed to get xvclk\n");return -EINVAL;}if (ret < 0) {#define NVP6158_XVCLK_FREQ			27000000ret = clk_set_rate(nvp6158->xvclk, NVP6158_XVCLK_FREQ);dev_err(dev, "Failed to set xvclk rate (24MHz)\n");return ret;}

rockchip,dvp_mode = "BT1120" :走BT1120模式

rockchip,channel_nums = <4>;//并口的数据lane ,只有一条lane 可配置1 参数:1/2/4

rockchip,default_rect= <1280 720>;摄像头分辨率。 rkcif会从nvp6158驱动里获取

rockchip,dual_edge :pclk的边沿有效 一般用于配置分辨率 720p:0 1080P:1 如下

rkcif 会获取对应的pclk dual_edge 
static int nvp6158_g_mbus_config(struct v4l2_subdev *sd,struct v4l2_mbus_config *cfg)
{struct nvp6158 *nvp6158 = to_nvp6158(sd);cfg->type = V4L2_MBUS_BT656;if (nvp6158->dual_edge == 1) {cfg->flags = RKMODULE_CAMERA_BT656_CHANNELS |V4L2_MBUS_PCLK_SAMPLE_RISING |V4L2_MBUS_PCLK_SAMPLE_FALLING;} else {cfg->flags = RKMODULE_CAMERA_BT656_CHANNELS |V4L2_MBUS_PCLK_SAMPLE_RISING;}return 0;
}

nvp6158关注的代码:

初始化热拔插工作队列:

INIT_DELAYED_WORK(&nvp6158->plug_state_check.d_work, nvp6158_plug_state_check_work);nvp6158->plug_state_check.state_check_wq =create_singlethread_workqueue("nvp6158_work_queue");if (nvp6158->plug_state_check.state_check_wq == NULL) {dev_err(dev, "%s(%d): %s create failed.\n", __func__, __LINE__,"nvp6158_work_queue");}

热拔插队列:打开DVP摄像头后 nvp6158_no_signal 读取nvp6158 0xa8地址,判断摄像头有无接入


#ifdef WORK_QUEUE
static void nvp6158_plug_state_check_work(struct work_struct *work)
{struct sensor_state_check_work *params_check =container_of(work, struct sensor_state_check_work, d_work.work);struct nvp6158 *nvp6158 =container_of(params_check, struct nvp6158, plug_state_check);struct i2c_client *client = nvp6158->client;struct v4l2_subdev *sd = &nvp6158->subdev;u8 novid_status = 0x00;u8 sync_status = 0x00;nvp6158_no_signal(sd, &novid_status);nvp6158_sync(sd, &sync_status);nvp6158->cur_detect_status = novid_status;/* detect state change to determine is there has plug motion */novid_status = nvp6158->cur_detect_status ^ nvp6158->last_detect_status;if (novid_status)nvp6158->hot_plug = true;elsenvp6158->hot_plug = false;nvp6158->last_detect_status = nvp6158->cur_detect_status;dev_info(&client->dev, "%s has plug motion? (%s)", __func__,nvp6158->hot_plug ? "true" : "false");if (nvp6158->hot_plug) {dev_info(&client->dev, "queue_delayed_work 1500ms, if has hot plug motion.");queue_delayed_work(nvp6158->plug_state_check.state_check_wq,&nvp6158->plug_state_check.d_work, msecs_to_jiffies(1500));nvp6158_write(client, 0xFF, 0x20);nvp6158_write(client, 0x00, (sync_status << 4) | sync_status);usleep_range(3000, 5000);nvp6158_write(client, 0x00, 0xFF);} else {dev_info(&client->dev, "queue_delayed_work 100ms, if no hot plug motion.");queue_delayed_work(nvp6158->plug_state_check.state_check_wq,&nvp6158->plug_state_check.d_work, msecs_to_jiffies(100));}
}
#endif

调试:

  I2C无法读取写入:

             1.确认电源电压

            2.确认时钟脚有无27M CLK信号

            3.排查是否其他器件影响

无图像:1.确认时钟脚有无27M CLK信号

              2.确认下发的分辨率与接入的摄像头是否对应得上

这篇关于RK DVP NVP6158配置 学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777056

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

如何自定义Nginx JSON日志格式配置

《如何自定义NginxJSON日志格式配置》Nginx作为最流行的Web服务器之一,其灵活的日志配置能力允许我们根据需求定制日志格式,本文将详细介绍如何配置Nginx以JSON格式记录访问日志,这种... 目录前言为什么选择jsON格式日志?配置步骤详解1. 安装Nginx服务2. 自定义JSON日志格式各

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实