rtt的io设备框架面向对象学习-电阻屏LCD设备

2024-03-05 01:28

本文主要是介绍rtt的io设备框架面向对象学习-电阻屏LCD设备,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.8080通信的电阻屏LCD设备
      • 1.1 构造流程
      • 1.2 使用
        • 2.i2c和spi通信的电阻屏LCD

电阻屏LCD通信接口有支持I2c、SPI和8080通信接口的。

1.8080通信的电阻屏LCD设备

rtt没有实现的设备驱动框架层,那么是在驱动层直接实现的,以stm32f407-atk-explorer为例,在/bsp / stm32 / stm32f407-atk-explorer / board / ports /drv_lcd.c中定义了该设备类:

struct drv_lcd_device
{struct rt_device parent;struct rt_device_graphic_info lcd_info;
};

其中struct rt_device_graphic_info是在/ components / drivers / include / drivers /classes/graphic.h定义的:

struct rt_device_graphic_info
{rt_uint8_t  pixel_format;                           /**< graphic format */rt_uint8_t  bits_per_pixel;                         /**< bits per pixel */rt_uint16_t pitch;                                  /**< bytes per line */rt_uint16_t width;                                  /**< width of graphic device */rt_uint16_t height;                                 /**< height of graphic device */rt_uint8_t *framebuffer;                            /**< frame buffer */rt_uint32_t smem_len;                               /**< allocated frame buffer size */
};

然后实例化了该设备类

static struct drv_lcd_device _lcd;

1.1 构造流程

并实现了其构造函数drv_lcd_hw_init:

int drv_lcd_hw_init(void)
{rt_err_t result = RT_EOK;struct rt_device *device = &_lcd.parent;/* memset _lcd to zero */memset(&_lcd, 0x00, sizeof(_lcd));_lcd.lcd_info.bits_per_pixel = 16;_lcd.lcd_info.pixel_format = RTGRAPHIC_PIXEL_FORMAT_RGB565;device->type = RT_Device_Class_Graphic;
#ifdef RT_USING_DEVICE_OPSdevice->ops = &lcd_ops;
#elsedevice->init = drv_lcd_init;device->control = drv_lcd_control;
#endifdevice->user_data = &fsmc_lcd_ops;/* register lcd device */rt_device_register(device, "lcd", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);return result;
}
INIT_DEVICE_EXPORT(drv_lcd_hw_init);

可以看到其重写了父类——设备基类的方法——但是只是重写了init方法和control方法。
其对象图如下
请添加图片描述
从上面代码可以知道它是调用在/ components / drivers / core /device.c中设备基类的构造函数rt_device_register,将电阻屏LCD设备对象放到对象容器里管理。

详细参见io设备管理层。
https://blog.csdn.net/yhb1206/article/details/136440373

1.2 使用

在/bsp / stm32 / stm32f407-atk-explorer / board / ports / touch /drv_xpt2046_init.c中,

static int touch_xpt2046_init(void)
{xpt2046_init_hw();rt_thread_t tid = rt_thread_create("xpt2046", xpt2046_entry, RT_NULL, 1024, 8, 20);RT_ASSERT(tid != RT_NULL);rt_thread_startup(tid);return RT_EOK;
}
INIT_COMPONENT_EXPORT(touch_xpt2046_init);

void xpt2046_init_hw(void)
{……lcd = rt_device_find("lcd");rt_device_init(lcd);
}

在rtt的io设备框架面向对象学习-touch设备中说过,因为此bsp的LCD是电阻触摸LCD屏,所以在xpt2046_init_hw中初始化触摸设备,最后也初始化了LCD,如上代码。
在xpt2046_entry线程中,读取到触摸坐标点,若开启了lvgl绘图,则通知lvgl绘图,否则直接调用rt_graphix_ops(lcd)->set_pixel在LCD上绘制点的轨迹。

lvgl对接有lcd的绘点接口,暂忽略。

rt_graphix_ops(lcd)->set_pixel是/ components / drivers / include / drivers /classes/graphic.h定义的lcd操作接口:

struct rt_device_graphic_ops
{void (*set_pixel) (const char *pixel, int x, int y);void (*get_pixel) (char *pixel, int x, int y);void (*draw_hline)(const char *pixel, int x1, int x2, int y);void (*draw_vline)(const char *pixel, int x, int y1, int y2);void (*blit_line) (const char *pixel, int x, int y, rt_size_t size);
};
#define rt_graphix_ops(device)          ((struct rt_device_graphic_ops *)(device->user_data))

而之前drv_lcd.c中实现了该接口:

struct rt_device_graphic_ops fsmc_lcd_ops ={LCD_Fast_DrawPoint,LCD_ReadPoint,LCD_HLine,LCD_VLine,LCD_BlitLine,
};

并在构造函数drv_lcd_hw_init中赋给了设备基类的user_data 成员

device->user_data = &fsmc_lcd_ops;

这样就能直接操作lcd绘图。

2.i2c和spi通信的电阻屏LCD

至于i2c和spi通信的电阻屏LCD是怎么操作的,通过查找,是没有新的对象的,都是直接对i2c总线和spi设备关联,直接包装发送数据即可,没有上面8080通信口那样子的新的设备框架对象。
spi的LCD屏可以参照官方开发板麻雀一号开发板。
i2c未找到参照物,但是应该是spi一样。

这篇关于rtt的io设备框架面向对象学习-电阻屏LCD设备的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774889

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个