本文主要是介绍Python绘制漏斗图之可视化神器pyecharts,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
漏斗图
漏斗图系列模板
尖顶型漏斗图
锥子型漏斗
三角形漏斗
连接型漏斗
每文一语
漏斗图
漏斗图是由Light等在1984年提出,一般以单个研究的效应量为横坐标,样本含量为纵坐标做的散点图。效应量可以为RR、OR和死亡比或者其对数值等。理论上讲,被纳入Meta分析的各独立研究效应的点估计,在平面坐标系中的集合应为一个倒置的漏斗形,因此称为漏斗图。
样本量小,研究精度低,分布在漏斗图的底部,向周围分散;
样本量大,研究精度高,分布在漏斗图的顶部,向中间集中。
漏斗图法的优点是:
简单易行,只需要被纳入的独立研究的样本含量和效应量便可绘制。
漏斗图法的缺点是:
漏斗图的对称仅通过目测,无严格限定,不同观察者可能有不同的结果;
漏斗图只能对发表偏倚进行粗略的定性判断,特别是在被纳入的独立研究个数较少时,又增加了判断漏斗图中散点是否存在对称性的难度;
可以使系统评价人员意识到存在的问题,但不能提供解决方法。
漏斗图系列模板
尖顶型漏斗图
数据可以通过Python进行预处理然后导入模板进行绘制。
from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Fakerc = (Funnel().add("类别",[list(z) for z in zip(Faker.choose(), Faker.values())],sort_="ascending",label_opts=opts.LabelOpts(position="inside"),).set_global_opts(title_opts=opts.TitleOpts(title="标题")).render("尖顶型漏斗.html")
)
锥子型漏斗
只需要把数据进行一定的排序就好了,当然在日常的科研统计分析肯定不是简单的数据。
from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Fakerc = (Funnel().add("类别", [list(z) for z in zip(Faker.choose(), Faker.values())]).set_global_opts(title_opts=opts.TitleOpts(title="标题")).render("锥子型漏斗.html")
)
三角形漏斗
import pyecharts.options as opts
from pyecharts.charts import Funnelx_data = ["展现", "点击", "访问", "咨询", "订单"]
y_data = [100, 80, 60, 40, 20]data = [[x_data[i], y_data[i]] for i in range(len(x_data))](Funnel(init_opts=opts.InitOpts(width="1200px", height="600px")).add(series_name="",data_pair=data,gap=2,tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b} : {c}%"),label_opts=opts.LabelOpts(is_show=True, position="inside"),itemstyle_opts=opts.ItemStyleOpts(border_color="#fff", border_width=1),).set_global_opts(title_opts=opts.TitleOpts(title="漏斗图", subtitle="123")).render("三角形漏斗.html")
)
连接型漏斗
from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Fakerc = (Funnel().add("类别",[list(z) for z in zip(Faker.choose(), Faker.values())],label_opts=opts.LabelOpts(position="inside"),).set_global_opts(title_opts=opts.TitleOpts(title="标题")).render("连接型漏斗.html")
)
漏斗图就介绍到这里了,祝你们科研路上头发越来越多!
每文一语
在风口浪尖的时代,猪也会飞!
这篇关于Python绘制漏斗图之可视化神器pyecharts的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!