Python绘制漏斗图之可视化神器pyecharts

2024-03-04 19:30

本文主要是介绍Python绘制漏斗图之可视化神器pyecharts,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 

漏斗图

漏斗图系列模板

尖顶型漏斗图

锥子型漏斗

三角形漏斗

连接型漏斗

 

每文一语


漏斗图

漏斗图是由Light等在1984年提出,一般以单个研究的效应量为横坐标,样本含量为纵坐标做的散点图。效应量可以为RR、OR和死亡比或者其对数值等。理论上讲,被纳入Meta分析的各独立研究效应的点估计,在平面坐标系中的集合应为一个倒置的漏斗形,因此称为漏斗图。

样本量小,研究精度低,分布在漏斗图的底部,向周围分散;

样本量大,研究精度高,分布在漏斗图的顶部,向中间集中。

漏斗图法的优点是:

简单易行,只需要被纳入的独立研究的样本含量和效应量便可绘制。

漏斗图法的缺点是:

漏斗图的对称仅通过目测,无严格限定,不同观察者可能有不同的结果;

漏斗图只能对发表偏倚进行粗略的定性判断,特别是在被纳入的独立研究个数较少时,又增加了判断漏斗图中散点是否存在对称性的难度;

可以使系统评价人员意识到存在的问题,但不能提供解决方法。

 

漏斗图系列模板

尖顶型漏斗图

数据可以通过Python进行预处理然后导入模板进行绘制。

from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Fakerc = (Funnel().add("类别",[list(z) for z in zip(Faker.choose(), Faker.values())],sort_="ascending",label_opts=opts.LabelOpts(position="inside"),).set_global_opts(title_opts=opts.TitleOpts(title="标题")).render("尖顶型漏斗.html")
)

 

锥子型漏斗

只需要把数据进行一定的排序就好了,当然在日常的科研统计分析肯定不是简单的数据。

from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Fakerc = (Funnel().add("类别", [list(z) for z in zip(Faker.choose(), Faker.values())]).set_global_opts(title_opts=opts.TitleOpts(title="标题")).render("锥子型漏斗.html")
)

 

三角形漏斗

import pyecharts.options as opts
from pyecharts.charts import Funnelx_data = ["展现", "点击", "访问", "咨询", "订单"]
y_data = [100, 80, 60, 40, 20]data = [[x_data[i], y_data[i]] for i in range(len(x_data))](Funnel(init_opts=opts.InitOpts(width="1200px", height="600px")).add(series_name="",data_pair=data,gap=2,tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b} : {c}%"),label_opts=opts.LabelOpts(is_show=True, position="inside"),itemstyle_opts=opts.ItemStyleOpts(border_color="#fff", border_width=1),).set_global_opts(title_opts=opts.TitleOpts(title="漏斗图", subtitle="123")).render("三角形漏斗.html")
)

 

 

连接型漏斗

from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Fakerc = (Funnel().add("类别",[list(z) for z in zip(Faker.choose(), Faker.values())],label_opts=opts.LabelOpts(position="inside"),).set_global_opts(title_opts=opts.TitleOpts(title="标题")).render("连接型漏斗.html")
)

 

 

漏斗图就介绍到这里了,祝你们科研路上头发越来越多!

 

每文一语

在风口浪尖的时代,猪也会飞!

这篇关于Python绘制漏斗图之可视化神器pyecharts的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774207

相关文章

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.