A Brief Introduction of the Tqdm Module in Python

2024-03-04 02:20

本文主要是介绍A Brief Introduction of the Tqdm Module in Python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DateAuthorVersionNote
2024.02.28Dog TaoV1.0Release the note.

文章目录

  • A Brief Introduction of the Tqdm Module in Python
    • Introduction
      • Key Features
      • Installation
    • Usage Examples
      • Basic Usage
      • Advanced Usage

A Brief Introduction of the Tqdm Module in Python

Introduction

Tqdm is a versatile Python library that provides a fast, extensible progress bar for loops and other iterable processes. The name tqdm is derived from the Arabic word “taqaddum” (تقدّم), meaning “progress,” and is pronounced as “ta-qe-dum.” Its simplicity and efficiency have made it a go-to choice for adding progress indicators to Python code, especially in data processing, file I/O, and long-running computations.

Key Features

  • Easy to Use: Tqdm can be added to your loops with minimal code changes, instantly providing visual feedback on the progress.
  • Highly Customizable: While simple to implement with default settings, tqdm also offers a wide range of customization options, including custom messages, progress bar formatting, and manual control over the progress updates.
  • Lightweight with Minimal Dependencies: It is designed to be lightweight and requires no heavy dependencies, making it suitable for various projects.
  • Versatile: Works with loops, iterable objects, and can even be used to track progress in pandas operations with tqdm.pandas().

Installation

  • Using pip

To install tqdm using pip, open your terminal (or command prompt/PowerShell in Windows) and run the following command:

pip install tqdm

If you are working in a virtual environment (which is recommended to avoid conflicts between different projects), make sure it is activated before running the pip install command.

  • Using conda

To install tqdm using conda, you should have Anaconda or Miniconda installed on your system. Open your Anaconda Prompt (or terminal in Linux/macOS) and run the following command:

conda install -c conda-forge tqdm

Using the -c conda-forge flag specifies that conda should install tqdm from the conda-forge channel, which is a community-maintained collection of conda packages.

Usage Examples

Basic Usage

The most common use of tqdm is to wrap it around any iterable in a for loop.

from tqdm import tqdm
import timefor i in tqdm(range(1000)):# Simulated tasktime.sleep(0.001)

The output example:

在这里插入图片描述

Advanced Usage

  • Customization: You can customize the progress bar with various parameters such as desc (description), total, leave, ncols (width), unit, and more.
for i in tqdm(range(100), desc="Loading", ascii=False, ncols=75):time.sleep(0.01)
  • Manual Updates: For tasks that don’t fit neatly into a loop, tqdm can be manually updated.
pbar = tqdm(total=100)
for i in range(10):time.sleep(0.1)pbar.update(10)  # Manually update the progress bar by 10
pbar.close()

The output example:

在这里插入图片描述

  • Integration with Pandas: Tqdm can be integrated with Pandas operations using tqdm.pandas(). This is particularly useful for applying functions to DataFrame columns or rows and visualizing the progress.
import pandas as pd
from tqdm import tqdm
tqdm.pandas()df = pd.DataFrame({'x': range(10000)})
df['y'] = df['x'].progress_apply(lambda x: x**2)

The output example:

在这里插入图片描述

  • Working with Concurrent Futures: Tqdm can also be used with concurrent programming modules like concurrent.futures for tracking the progress of asynchronous tasks.
from concurrent.futures import ThreadPoolExecutor, as_completedwith ThreadPoolExecutor(max_workers=5) as executor:futures = [executor.submit(time.sleep, 0.1) for _ in range(100)]for f in tqdm(as_completed(futures), total=len(futures)):pass

The output example:

在这里插入图片描述

Tqdm’s simplicity, combined with its powerful features, makes it an invaluable tool for enhancing the user experience in command-line applications and Jupyter notebooks by providing clear and customizable progress indications.

这篇关于A Brief Introduction of the Tqdm Module in Python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771725

相关文章

python版本切换工具pyenv的安装及用法

《python版本切换工具pyenv的安装及用法》Pyenv是管理Python版本的最佳工具之一,特别适合开发者和需要切换多个Python版本的用户,:本文主要介绍python版本切换工具pyen... 目录Pyenv 是什么?安装 Pyenv(MACOS)使用 Homebrew:配置 shell(zsh

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python列表的创建与删除的操作指南

《Python列表的创建与删除的操作指南》列表(list)是Python中最常用、最灵活的内置数据结构之一,它支持动态扩容、混合类型、嵌套结构,几乎无处不在,但你真的会创建和删除列表吗,本文给大家介绍... 目录一、前言二、列表的创建方式1. 字面量语法(最常用)2. 使用list()构造器3. 列表推导式

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处