基于YOLOv的目标追踪与无人机前端查看系统开发

2024-03-04 00:20

本文主要是介绍基于YOLOv的目标追踪与无人机前端查看系统开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景与简介

        随着无人机技术的快速发展,目标追踪成为无人机应用中的重要功能之一。YOLOv作为一种高效的目标检测算法,同样适用于目标追踪任务。通过集成YOLOv模型我们可以构建一个无人机前端查看系统,实现实时目标追踪和可视化,为无人机操作员提供直观的操作界面和决策支持。

目录

一、背景与简介

二、系统架构

我们的系统主要包括三个部分:(YOLOv目标检测与追踪模块、无人机控制模块和前端查看界面。)

三、环境配置

与YOLOv应用开发类似,我们需要配置一个适合目标追踪的环境。

以下是基于conda的环境配置示例:

四、代码实现

以下是一个简化的代码示例:展示了如何集成YOLOv模型进行目标追踪,并通过前端查看界面展示结果:

五、前端代码实现

以下是一个简化的前端代码示例,用于展示如何通过WebSocket与后端进行通信,接收实时视频流和目标追踪结果,并在网页上进行展示。

HTML (index.html)

JavaScript (main.js) 

在这个示例中:

六、系统测试与优化

在完成系统开发后,我们需要进行系统测试,确保目标追踪和前端查看功能正常工作。

系统测试

性能优化

七、未来展望

我们可以期待YOLOv系列的进一步升级改进,以及更多目标追踪的无人机应用场景的出现。



二、系统架构

我们的系统主要包括三个部分:(YOLOv目标检测与追踪模块、无人机控制模块和前端查看界面。)
  • YOLOv模块||负责实时处理无人机传回的图像,进行目标检测和追踪
  • 无人机控制模块||负责接收YOLOv模块的输出,控制无人机的飞行和拍摄。
  • 前端查看界面||则用于展示无人机拍摄的实时视频流和目标追踪结果,提供直观的可视化效果。

三、环境配置

  • 与YOLOv应用开发类似,我们需要配置一个适合目标追踪的环境。
  • 以下是基于conda的环境配置示例:
conda create -n target_tracking python=3.8  
conda activate target_tracking  
pip install torch torchvision  
pip install opencv-python  
pip install dronekit  # 无人机控制库

除了安装YOLOv所需的依赖库外,还需要安装无人机控制相关的库和工具。 


四、代码实现

  • 以下是一个简化的代码示例:展示了如何集成YOLOv模型进行目标追踪,并通过前端查看界面展示结果:
import cv2  
import torch  
from models.experimental import attempt_load  
from utils.general import non_max_suppression, scale_coordinates  
from dronekit import connect, VehicleMode, LocationGlobalRelative  # 加载YOLOv模型  
model = attempt_load('yolov5s.pt', map_location=torch.device('cpu'))  
classes = ['person', 'car', 'bike', ...]  # 目标类别列表  # 连接无人机  
vehicle = connect('127.0.0.1:14550', wait_ready=True)  
vehicle.mode = VehicleMode("GUIDED")  # 初始化前端查看界面  
cap = cv2.VideoCapture('tcp://127.0.0.1:14550/video_feed')  
window_name = '无人机前端查看'  
cv2.namedWindow(window_name)  while True:  ret, frame = cap.read()  if not ret:  break  # 将图像转换为模型所需的格式  img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  img = torch.from_numpy(img).to(torch.float32) / 255.0  # 进行目标检测与追踪  pred = model(img)[0]  pred = non_max_suppression(pred, conf_thres=0.5, iou_thres=0.4)  # 可视化追踪结果  for det in pred:  if len(det):  det[:, :4] = scale_coordinates(img.shape[2:], det[:, :4], frame.shape).round()  for *xyxy, conf, cls in reversed(det):  label = f'{classes[int(cls)]} {conf:.2f}'  cv2.rectangle(frame, (xyxy[0], xyxy[1]), (xyxy[2], xyxy[3]), (0, 255, 0), 2)  cv2.putText(frame, label, (xyxy[0], xyxy[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)  # 显示前端查看界面  cv2.imshow(window_name, frame)  if cv2.waitKey(1) & 0xFF == ord('q'):  break  # 断开无人机连接  
cap.release()  
vehicle.close()  
cv2.destroyAllWindows()


五、前端代码实现

  • 以下是一个简化的前端代码示例,用于展示如何通过WebSocket与后端进行通信,接收实时视频流和目标追踪结果,并在网页上进行展示。
  • HTML (index.html)
<!DOCTYPE html>  
<html lang="en">  
<head>  <meta charset="UTF-8">  <meta name="viewport" content="width=device-width, initial-scale=1.0">  <title>无人机前端查看系统</title>  <style>  #video-container {  position: relative;  width: 640px;  height: 480px;  margin: auto;  }  #video {  width: 100%;  height: 100%;  }  #overlay {  position: absolute;  top: 0;  left: 0;  width: 100%;  height: 100%;  pointer-events: none;  }  .bounding-box {  position: absolute;  border: 2px solid red;  }  </style>  
</head>  
<body>  <div id="video-container">  <video id="video" autoplay></video>  <canvas id="overlay"></canvas>  </div>  <script src="main.js"></script>  
</body>  
</html>

  • JavaScript (main.js) 
const videoElement = document.getElementById('video');  
const overlayCanvas = document.getElementById('overlay');  
const overlayContext = overlayCanvas.getContext('2d');  // 初始化WebSocket连接  
const socket = new WebSocket('ws://localhost:8080'); // 假设后端WebSocket服务运行在本地8080端口  // 处理来自后端的视频流  
socket.onmessage = function(event) {  const blob = new Blob([event.data], { type: 'video/webm; codecs=vp9' });  const videoUrl = URL.createObjectURL(blob);  videoElement.src = videoUrl;  videoElement.play();  
};  // 处理来自后端的目标追踪数据  
socket.ontrack = function(event) {  const { x, y, width, height } = event.data;  drawBoundingBox(x, y, width, height);  
};  // 在视频上绘制边界框  
function drawBoundingBox(x, y, width, height) {  overlayCanvas.width = videoElement.videoWidth;  overlayCanvas.height = videoElement.videoHeight;  overlayContext.clearRect(0, 0, overlayCanvas.width, overlayCanvas.height);  overlayContext.beginPath();  overlayContext.rect(x, y, width, height);  overlayContext.stroke();  
}  // 连接建立后发送请求视频流的消息  
socket.onopen = function() {  socket.send(JSON.stringify({ type: 'request_video_stream' }));  
};  // 处理连接关闭事件  
socket.onclose = function() {  console.log('WebSocket connection closed.');  
};  // 处理连接错误事件  
socket.onerror = function(error) {  console.error('WebSocket error:', error);  
};

在这个示例中:
  • 前端通过WebSocket与后端建立连接,并监听onmessage事件来接收实时视频流数据。一旦接收到视频流数据,它创建一个Blob对象,然后将其转换为Object URL,并将其设置为<video>元素src属性,从而开始播放视频
  • 同时,前端还监听一个自定义的ontrack事件,该事件由后端触发,用于发送目标追踪结果。一旦接收到追踪结果,前端使用drawBoundingBox函数在视频上绘制相应的边界框。

六、系统测试与优化

  • 在完成系统开发后,我们需要进行系统测试,确保目标追踪和前端查看功能正常工作。
系统测试
  • 我们可以使用不同的测试场景和目标对象来测试系统的性能。通过比较实际输出与预期输出,我们可以评估系统的准确性和可靠性。
性能优化
  • 为了提高目标追踪的准确性和实时性,我们可以对YOLOv模型进行调优,如调整模型参数、使用更高效的推理引擎等。同时,我们还可以优化前端界面的渲染性能,如使用Web Worker进行数据处理、使用GPU加速绘制等

七、未来展望

  • 我们可以期待YOLOv系列的进一步升级改进,以及更多目标追踪的无人机应用场景的出现。


  •         本文介绍了基于YOLOv的目标追踪与无人机前端查看系统的开发过程。
  •         通过集成YOLOv模型、设计后端API、实现WebSocket通信以及开发前端界面,我们构建了一个实时目标追踪和前端查看系统。

                该系统为无人机操作员提供了直观的操作界面和决策支持,具有广泛的应用前景。

这篇关于基于YOLOv的目标追踪与无人机前端查看系统开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771406

相关文章

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

前端如何通过nginx访问本地端口

《前端如何通过nginx访问本地端口》:本文主要介绍前端如何通过nginx访问本地端口的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、nginx安装1、下载(1)下载地址(2)系统选择(3)版本选择2、安装部署(1)解压(2)配置文件修改(3)启动(4)

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

HTML input 标签示例详解

《HTMLinput标签示例详解》input标签主要用于接收用户的输入,随type属性值的不同,变换其具体功能,本文通过实例图文并茂的形式给大家介绍HTMLinput标签,感兴趣的朋友一... 目录通用属性输入框单行文本输入框 text密码输入框 password数字输入框 number电子邮件输入编程框

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

CSS3打造的现代交互式登录界面详细实现过程

《CSS3打造的现代交互式登录界面详细实现过程》本文介绍CSS3和jQuery在登录界面设计中的应用,涵盖动画、选择器、自定义字体及盒模型技术,提升界面美观与交互性,同时优化性能和可访问性,感兴趣的朋... 目录1. css3用户登录界面设计概述1.1 用户界面设计的重要性1.2 CSS3的新特性与优势1.

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF