小白学视觉 | 详解遗传算法 GA(Python实现代码)

2024-03-03 03:12

本文主要是介绍小白学视觉 | 详解遗传算法 GA(Python实现代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“小白学视觉”,仅用于学术分享,侵权删,干货满满。

原文链接:详解遗传算法 GA(Python实现代码)

转自:机器之心

英文:www.analyticsvidhya.com/blog/2017/07/introduction-to-genetic-algorithm/

本文分享遗传算法 (GA , Genetic Algorithm) ,也称进化算法!

1 遗传算法理论的由来

我们先从查尔斯·达尔文的一句名言开始:

能够生存下来的往往不是最强大的物种,也不是最聪明的物种,而是最能适应环境的物种。

你也许在想:这句话和遗传算法有什么关系?其实遗传算法的整个概念就基于这句话。

让我们用一个基本例子来解释 :

我们先假设一个情景,现在你是一国之王,为了让你的国家免于灾祸,你实施了一套法案:

  • 你选出所有的好人,要求其通过生育来扩大国民数量。

  • 这个过程持续进行了几代。

  • 你将发现,你已经有了一整群的好人。

这个例子虽然不太可能,但是我用它是想帮助你理解概念。也就是说,我们改变了输入值(比如:人口),就可以获得更好的输出值(比如:更好的国家)。现在,我假定你已经对这个概念有了大致理解,认为遗传算法的含义应该和生物学有关系。那么我们就快速地看一些小概念,这样便可以将其联系起来理解。

2 生物学的启发

相信你还记得这句话:「细胞是所有生物的基石。」由此可知,在一个生物的任何一个细胞中,都有着相同的一套染色体。所谓染色体,就是指由 DNA 组成的聚合体。

传统上看,这些染色体可以被由数字 0 和 1 组成的字符串表达出来。

一条染色体由基因组成,这些基因其实就是组成 DNA 的基本结构,DNA 上的每个基因都编码了一个独特的性状,比如,头发或者眼睛的颜色。希望你在继续阅读之前先回忆一下这里提到的生物学概念。结束了这部分,现在我们来看看所谓遗传算法实际上指的是什么?

3 遗传算法定义

首先我们回到前面讨论的那个例子,并总结一下我们做过的事情。

  1. 首先,我们设定好了国民的初始人群大小。

  2. 然后,我们定义了一个函数,用它来区分好人和坏人。

  3. 再次,我们选择出好人,并让他们繁殖自己的后代。

  4. 最后,这些后代们从原来的国民中替代了部分坏人,并不断重复这一过程。

遗传算法实际上就是这样工作的,也就是说,它基本上尽力地在某种程度上模拟进化的过程。因此,为了形式化定义一个遗传算法,我们可以将它看作一个优化方法,它可以尝试找出某些输入,凭借这些输入我们便可以得到最佳的输出值或者是结果。遗传算法的工作方式也源自于生物学,具体流程见下图:

那么现在我们来逐步理解一下整个流程。

4 遗传算法具体步骤

为了让讲解更为简便,我们先来理解一下著名的组合优化问题「背包问题」。如果你还不太懂,这里有一个我的解释版本。

比如,你准备要去野游 1 个月,但是你只能背一个限重 30 公斤的背包。现在你有不同的必需物品,它们每一个都有自己的「生存点数」(具体在下表中已给出)。因此,你的目标是在有限的背包重量下,最大化你的「生存点数」。

4.1 初始化

这里我们用遗传算法来解决这个背包问题。第一步是定义我们的总体。总体中包含了个体,每个个体都有一套自己的染色体。

我们知道,染色体可表达为二进制数串,在这个问题中,1 代表接下来位置的基因存在,0 意味着丢失。(译者注:作者这里借用染色体、基因来解决前面的背包问题,所以特定位置上的基因代表了上方背包问题表格中的物品,比如第一个位置上是 Sleeping Bag,那么此时反映在染色体的『基因』位置就是该染色体的第一个『基因』。)

现在,我们将图中的 4 条染色体看作我们的总体初始值。

4.2 适应度函数

接下来,让我们来计算一下前两条染色体的适应度分数。对于 A1 染色体 [100110] 而言,有:

类似地,对于 A2 染色体 [001110] 来说,有:

对于这个问题,我们认为,当染色体包含更多生存分数时,也就意味着它的适应性更强。

因此,由图可知,染色体 1 适应性强于染色体 2。

4.3 选择

现在,我们可以开始从总体中选择适合的染色体,来让它们互相『交配』,产生自己的下一代了。这个是进行选择操作的大致想法,但是这样将会导致染色体在几代之后相互差异减小,失去了多样性。因此,我们一般会进行「轮盘赌选择法」(Roulette Wheel Selection method)。

想象有一个轮盘,现在我们将它分割成 m 个部分,这里的 m 代表我们总体中染色体的个数。每条染色体在轮盘上占有的区域面积将根据适应度分数成比例表达出来。

基于上图中的值,我们建立如下「轮盘」。

现在,这个轮盘开始旋转,我们将被图中固定的指针(fixed point)指到的那片区域选为第一个亲本。然后,对于第二个亲本,我们进行同样的操作。有时候我们也会在途中标注两个固定指针,如下图:

通过这种方法,我们可以在一轮中就获得两个亲本。我们将这种方法成为「随机普遍选择法」(Stochastic Universal Selection method)。

4.4 交叉

在上一个步骤中,我们已经选择出了可以产生后代的亲本染色体。那么用生物学的话说,所谓「交叉」,其实就是指的繁殖。现在我们来对染色体 1 和 4(在上一个步骤中选出来的)进行「交叉」,见下图:

这是交叉最基本的形式,我们称其为「单点交叉」。这里我们随机选择一个交叉点,然后,将交叉点前后的染色体部分进行染色体间的交叉对调,于是就产生了新的后代。

如果你设置两个交叉点,那么这种方法被成为「多点交叉」,见下图:

4.5 变异

如果现在我们从生物学的角度来看这个问题,那么请问:由上述过程产生的后代是否有和其父母一样的性状呢?答案是否。在后代的生长过程中,它们体内的基因会发生一些变化,使得它们与父母不同。这个过程我们称为「变异」,它可以被定义为染色体上发生的随机变化,正是因为变异,种群中才会存在多样性。

下图为变异的一个简单示例:

变异完成之后,我们就得到了新为个体,进化也就完成了,整个过程如下图:

在进行完一轮「遗传变异」之后,我们用适应度函数对这些新的后代进行验证,如果函数判定它们适应度足够,那么就会用它们从总体中替代掉那些适应度不够的染色体。这里有个问题,我们最终应该以什么标准来判断后代达到了最佳适应度水平呢?

一般来说,有如下几个终止条件:

  1. 在进行 X 次迭代之后,总体没有什么太大改变。

  2. 我们事先为算法定义好了进化的次数。

  3. 当我们的适应度函数已经达到了预先定义的值。

好了,现在我假设你已基本理解了遗传算法的要领,那么现在让我们用它在数据科学的场景中应用一番。

5 遗传算法的应用

5.1 特征选取

试想一下每当你参加一个数据科学比赛,你会用什么方法来挑选那些对你目标变量的预测来说很重要的特征呢?你经常会对模型中特征的重要性进行一番判断,然后手动设定一个阈值,选择出其重要性高于这个阈值的特征。

那么,有没有什么方法可以更好地处理这个问题呢?其实处理特征选取任务最先进的算法之一就是遗传算法。

我们前面处理背包问题的方法可以完全应用到这里。现在,我们还是先从建立「染色体」总体开始,这里的染色体依旧是二进制数串,「1」表示模型包含了该特征,「0 表示模型排除了该特征」。

不过,有一个不同之处,即我们的适应度函数需要改变一下。这里的适应度函数应该是这次比赛的的精度的标准。也就是说,如果染色体的预测值越精准,那么就可以说它的适应度更高。

现在我假设你已经对这个方法有点一概念了。下面我不会马上讲解这个问题的解决过程,而是让我们先来用 TPOT 库去实现它。

5.2 用 TPOT 库来实现

这个部分相信是你在一开始读本文时心里最终想实现的那个目标。即:实现。那么首先我们来快速浏览一下 TPOT 库(Tree-based Pipeline Optimisation Technique,树形传递优化技术),该库基于 scikit-learn 库建立。下图为一个基本的传递结构。

图中的灰色区域用 TPOT 库实现了自动处理。实现该部分的自动处理需要用到遗传算法。

我们这里不深入讲解,而是直接应用它。为了能够使用 TPOT 库,你需要先安装一些 TPOT 建立于其上的 python 库。下面我们快速安装它们:

# installing DEAP, update_checker and tqdmpip install deap update_checker tqdm
# installling TPOT
pip install tpot

这里,我用了 Big Mart Sales(数据集地址:https://datahack.analyticsvidhya.com/contest/practice-problem-big-mart-sales-iii/)数据集,为实现做准备,我们先快速下载训练和测试文件,以下是 python 代码:

# import basic librariesimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import preprocessing
from sklearn.metrics import mean_squared_error
## preprocessing
### mean imputationstrain['Item_Weight'].fillna((train['Item_Weight'].mean()), inplace=True)
test['Item_Weight'].fillna((test['Item_Weight'].mean()), inplace=True)
### reducing fat content to only two categoriestrain['Item_Fat_Content'] = train['Item_Fat_Content'].replace(['low fat','LF'], ['Low Fat','Low Fat'])
train['Item_Fat_Content'] = train['Item_Fat_Content'].replace(['reg'], ['Regular'])
test['Item_Fat_Content'] = test['Item_Fat_Content'].replace(['low fat','LF'], ['Low Fat','Low Fat'])
test['Item_Fat_Content'] = test['Item_Fat_Content'].replace(['reg'], ['Regular'])
train['Outlet_Establishment_Year'] = 2013 - train['Outlet_Establishment_Year']
test['Outlet_Establishment_Year'] = 2013 - test['Outlet_Establishment_Year']train['Outlet_Size'].fillna('Small',inplace=True)
test['Outlet_Size'].fillna('Small',inplace=True)train['Item_Visibility'] = np.sqrt(train['Item_Visibility'])
test['Item_Visibility'] = np.sqrt(test['Item_Visibility'])col = ['Outlet_Size','Outlet_Location_Type','Outlet_Type','Item_Fat_Content']
test['Item_Outlet_Sales'] = 0combi = train.append(test)for i in col:
combi[i] = number.fit_transform(combi[i].astype('str'))
combi[i] = combi[i].astype('object')
train = combi[:train.shape[0]]
test = combi[train.shape[0]:]
test.drop('Item_Outlet_Sales',axis=1,inplace=True)
## removing id variablestpot_train = train.drop(['Outlet_Identifier','Item_Type','Item_Identifier'],axis=1)
tpot_test = test.drop(['Outlet_Identifier','Item_Type','Item_Identifier'],axis=1)
target = tpot_train['Item_Outlet_Sales']
tpot_train.drop('Item_Outlet_Sales',axis=1,inplace=True)
# finally building model using tpot libraryfrom tpot import TPOTRegressor
X_train, X_test, y_train, y_test = train_test_split(tpot_train, target,
train_size=0.75, test_size=0.25)tpot = TPOTRegressor(generations=5, population_size=50, verbosity=2)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export('tpot_boston_pipeline.py')

一旦这些代码运行完成,tpot_exported_pipeline.py 里就将会放入用于路径优化的 python 代码。我们可以发现,ExtraTreeRegressor 可以最好地解决这个问题。

## predicting using tpot optimised pipelinetpot_pred = tpot.predict(tpot_test)
sub1 = pd.DataFrame(data=tpot_pred)
#sub1.index = np.arange(0, len(test)+1)sub1 = sub1.rename(columns = {'0':'Item_Outlet_Sales'})
sub1['Item_Identifier'] = test['Item_Identifier']
sub1['Outlet_Identifier'] = test['Outlet_Identifier']
sub1.columns = ['Item_Outlet_Sales','Item_Identifier','Outlet_Identifier']
sub1 = sub1[['Item_Identifier','Outlet_Identifier','Item_Outlet_Sales']]
sub1.to_csv('tpot.csv',index=False)

如果你提交了这个 csv,那么你会发现我一开始保证的那些还没有完全实现。那是不是我在骗你们呢?当然不是。实际上,TPOT 库有一个简单的规则。如果你不运行 TPOT 太久,那么它就不会为你的问题找出最可能传递方式。

所以,你得增加进化的代数,拿杯咖啡出去走一遭,其它的交给 TPOT 就行。此外,你也可以用这个库来处理分类问题。进一步内容可以参考这个文档:http://rhiever.github.io/tpot/。除了比赛,在生活中我们也有很多应用场景可以用到遗传算法。

6 实际应用

遗传算法在真实世界中有很多应用。这里我列了部分有趣的场景,但是由于篇幅限制,我不会逐一详细介绍。

6.1 工程设计

工程设计非常依赖计算机建模以及模拟,这样才能让设计周期过程即快又经济。遗传算法在这里可以进行优化并给出一个很好的结果。

相关资源:

  • 论文:Engineering design using genetic algorithms

  • 地址:http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=16942&context=rtd

6.2 交通与船运路线(Travelling Salesman Problem,巡回售货员问题)

这是一个非常著名的问题,它已被很多贸易公司用来让运输更省时、经济。解决这个问题也要用到遗传算法。

6.3 机器人

遗传算法在机器人领域中的应用非常广泛。实际上,目前人们正在用遗传算法来创造可以像人类一样行动的自主学习机器人,其执行的任务可以是做饭、洗衣服等等。

相关资源:

  • 论文:Genetic Algorithms for Auto-tuning Mobile Robot Motion Control

  • 地址:https://pdfs.semanticscholar.org/7c8c/faa78795bcba8e72cd56f8b8e3b95c0df20c.pdf

7 结语

希望通过本文介绍,你现在已经对遗传算法有了足够的理解,而且也会用 TPOT 库来实现它了。但是如果你不亲身实践,本文的知识也是非常有限的。

所以,请各位读者朋友一定要在无论是数据科学比赛或是生活中尝试自己去实现它。 

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于小白学视觉 | 详解遗传算法 GA(Python实现代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768274

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

公共筛选组件(二次封装antd)支持代码提示

如果项目是基于antd组件库为基础搭建,可使用此公共筛选组件 使用到的库 npm i antdnpm i lodash-esnpm i @types/lodash-es -D /components/CommonSearch index.tsx import React from 'react';import { Button, Card, Form } from 'antd'

17.用300行代码手写初体验Spring V1.0版本

1.1.课程目标 1、了解看源码最有效的方式,先猜测后验证,不要一开始就去调试代码。 2、浓缩就是精华,用 300行最简洁的代码 提炼Spring的基本设计思想。 3、掌握Spring框架的基本脉络。 1.2.内容定位 1、 具有1年以上的SpringMVC使用经验。 2、 希望深入了解Spring源码的人群,对 Spring有一个整体的宏观感受。 3、 全程手写实现SpringM

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

Python 字符串占位

在Python中,可以使用字符串的格式化方法来实现字符串的占位。常见的方法有百分号操作符 % 以及 str.format() 方法 百分号操作符 % name = "张三"age = 20message = "我叫%s,今年%d岁。" % (name, age)print(message) # 我叫张三,今年20岁。 str.format() 方法 name = "张三"age

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主