1.2 处理类别型特征(序号编码、独热编码、二进制编码)

2024-03-02 20:28

本文主要是介绍1.2 处理类别型特征(序号编码、独热编码、二进制编码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

02 知识点:类别型特征(序号编码、独热编码、二进制编码)

知识点:序号编码(Ordinal Encoding)、独热编码(One-hot Encoding)、二进制编码(Binary Encoding)

摘要类别型特征指的是在有限选项内取值的特征。处理方法有:序号编码、独热编码、二进制编码。

场景描述

类别型特征(Categorical Feature)主要是指性别(男、女)、血型(A、B、AB、O)等只在有限选项内取值的特征

类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作

问题:在对数据进行预处理时,应该怎样处理类别型特征?(难度:2颗星)

分析与解答
  • 序号编码

    ​ 序号编码通常用于处理类别间具有大小关系的数据

    例如成绩,可以分为低、中、高三档,并且存在“高>中>低”的排序关系。序号编码会按照大小关系对类别型特征赋予一个数值ID,例如高表示为3、中表示为2、低表示为1,转换后依然保留了大小关系。

  • 独热编码
    独热编码通常用于处理类别间不具有大小关系的特征

    例如血型,一共有4个取值(A型血、B型血、AB 型血、O型血),独热编码会把血型变成一个4维稀疏向量,A 型血表示为(1,0,0,0),B 型血表示为(0,1,0,0),AB型表示为(0,0,1,0),O型血表示为(0,0,0,1)。

    对于类别取值较多的情况下使用独热编码需要注意以下问题。

    (1) 使用稀疏向量来节省空间。

    在独热编码下,特征向量只有某一维取值为1,其他位置取值均为0。因此可以利用向量的稀疏表示有效地节省空间,并且目前大部分的算法均接受稀疏向量形式的输入。

    (2) 配合特征选择来降低维度。

    高维度特征会带来几方面的问题。一是在K近邻算法中,高维空间下两点之间的距离很难得到有效的衡量;二是在逻辑回归模型中,参数的数量会随着维度的增高而增加,容易引起过拟合问题;三是通常只有部分维度是对分类、预测有帮助,因此可以考虑配合特征选择来降低维度。

  • 二进制编码

    二进制编码主要分为两步,先用序号编码给每个类别赋予一个类别ID,然后将类别ID对应的二进制编码作为结果。

    以A、B、AB、O血型为例,表1.1是二进制编码的过程。A 型血的ID 为1,二进制表示为001;B型血的ID为2,二进制表示为010;以此类推可以得到AB型血和O型血的二进制表示。

    可以看出,二进制编码本质上是利用二进制对ID进行哈希映射,最终得到0/1特征向量,且维数少于独热编码,节省了存储空间。

    在这里插入图片描述

除了本章介绍的编码方法外,有兴趣的读者还可以进一步了解其他的编码方式,比如Helmer t Contrast、Sum Contrast、PolynomialContrast、Backward Difference Contrast等。

参考文献:
《百面机器学习》 诸葛越主编
出版社:人民邮电出版社(北京)
ISBN:978-7-115-48736-0
2022年1月北京第19次印刷

这篇关于1.2 处理类别型特征(序号编码、独热编码、二进制编码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767327

相关文章

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤