1.2 处理类别型特征(序号编码、独热编码、二进制编码)

2024-03-02 20:28

本文主要是介绍1.2 处理类别型特征(序号编码、独热编码、二进制编码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

02 知识点:类别型特征(序号编码、独热编码、二进制编码)

知识点:序号编码(Ordinal Encoding)、独热编码(One-hot Encoding)、二进制编码(Binary Encoding)

摘要类别型特征指的是在有限选项内取值的特征。处理方法有:序号编码、独热编码、二进制编码。

场景描述

类别型特征(Categorical Feature)主要是指性别(男、女)、血型(A、B、AB、O)等只在有限选项内取值的特征

类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作

问题:在对数据进行预处理时,应该怎样处理类别型特征?(难度:2颗星)

分析与解答
  • 序号编码

    ​ 序号编码通常用于处理类别间具有大小关系的数据

    例如成绩,可以分为低、中、高三档,并且存在“高>中>低”的排序关系。序号编码会按照大小关系对类别型特征赋予一个数值ID,例如高表示为3、中表示为2、低表示为1,转换后依然保留了大小关系。

  • 独热编码
    独热编码通常用于处理类别间不具有大小关系的特征

    例如血型,一共有4个取值(A型血、B型血、AB 型血、O型血),独热编码会把血型变成一个4维稀疏向量,A 型血表示为(1,0,0,0),B 型血表示为(0,1,0,0),AB型表示为(0,0,1,0),O型血表示为(0,0,0,1)。

    对于类别取值较多的情况下使用独热编码需要注意以下问题。

    (1) 使用稀疏向量来节省空间。

    在独热编码下,特征向量只有某一维取值为1,其他位置取值均为0。因此可以利用向量的稀疏表示有效地节省空间,并且目前大部分的算法均接受稀疏向量形式的输入。

    (2) 配合特征选择来降低维度。

    高维度特征会带来几方面的问题。一是在K近邻算法中,高维空间下两点之间的距离很难得到有效的衡量;二是在逻辑回归模型中,参数的数量会随着维度的增高而增加,容易引起过拟合问题;三是通常只有部分维度是对分类、预测有帮助,因此可以考虑配合特征选择来降低维度。

  • 二进制编码

    二进制编码主要分为两步,先用序号编码给每个类别赋予一个类别ID,然后将类别ID对应的二进制编码作为结果。

    以A、B、AB、O血型为例,表1.1是二进制编码的过程。A 型血的ID 为1,二进制表示为001;B型血的ID为2,二进制表示为010;以此类推可以得到AB型血和O型血的二进制表示。

    可以看出,二进制编码本质上是利用二进制对ID进行哈希映射,最终得到0/1特征向量,且维数少于独热编码,节省了存储空间。

    在这里插入图片描述

除了本章介绍的编码方法外,有兴趣的读者还可以进一步了解其他的编码方式,比如Helmer t Contrast、Sum Contrast、PolynomialContrast、Backward Difference Contrast等。

参考文献:
《百面机器学习》 诸葛越主编
出版社:人民邮电出版社(北京)
ISBN:978-7-115-48736-0
2022年1月北京第19次印刷

这篇关于1.2 处理类别型特征(序号编码、独热编码、二进制编码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767327

相关文章

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Gin框架中的GET和POST表单处理的实现

《Gin框架中的GET和POST表单处理的实现》Gin框架提供了简单而强大的机制来处理GET和POST表单提交的数据,通过c.Query、c.PostForm、c.Bind和c.Request.For... 目录一、GET表单处理二、POST表单处理1. 使用c.PostForm获取表单字段:2. 绑定到结

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

如何将二进制文件流转化为MockMultipartFile文件

《如何将二进制文件流转化为MockMultipartFile文件》文章主要介绍了如何使用Spring框架中的MockMultipartFile类来模拟文件上传,并处理上传逻辑,包括获取二进制文件流、创... 目录一、名词解释及业务解释1.具体业务流程2.转换对象解释1. MockMultipartFile2

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结