2176. 太空飞行计划问题(最小割,最大权闭合图)

2024-03-02 18:44

本文主要是介绍2176. 太空飞行计划问题(最小割,最大权闭合图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

活动 - AcWing

W 教授正在为国家航天中心计划一系列的太空飞行。

每次太空飞行可进行一系列商业性实验而获取利润。

现已确定了一个可供选择的实验集合 E={E1,E2,…,Em} 和进行这些实验需要使用的全部仪器的集合 I={I1,I2,…,In}。

实验 Ej 需要用到的仪器是 I 的子集 Rj⊆I。

配置仪器 Ik 的费用为 ck 美元。

实验 Ej 的赞助商已同意为该实验结果支付 pj 美元。

W 教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。

这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。

对于给定的实验和仪器配置情况,编程找出净收益最大的试验计划。

输入格式

第 1 行有 2 个正整数 m 和 n。m 是实验数,n 是仪器数。

接下来的 m 行,每行是一个实验的有关数据。

第一个数赞助商同意支付该实验的费用;接着是该实验需要用到的若干仪器的编号。

最后一行的 n 个数是配置每个仪器的费用。

实验和仪器的编号都是从 1 开始。

输出格式

将最佳实验方案输出。

第 1 行是实验编号;

第 2 行是仪器编号;

最后一行是净收益。

如果最佳方案不唯一,则输出任意一种均可。

数据范围

1≤m,n≤50
所有仪器费用以及赞助费用均不超过 100。

输入样例:
2 3
10 1 2
25 2 3
5 6 7
输出样例:
1 2
1 2 3
17

解析: 

本题给了很多实验,完成每个实验能获得一定的收益,还有很多器材,每个实验需要对应的一些器材,每个器材都有一个花费。

可以发现想完成每个实验都需要购买对应的器材,如果将所有器材的权值设置成负数,所有实验的权值设置成正数,如果将所有实验向对应的器材连一条边,那么可以发现任何一个原问题的可行方案都会对应到图中的一个闭合子图。

因此本题求的最大净收益其实就是图中的最大权闭合子图,因此可以用求最大权闭合子图的方法来求,从源点向所有实验连一条容量是收益的边,从所有器材向汇点连一条容量是花费的边,从所有实验向对应的器材连一条容量是 +∞ 的边。

因此本题是经典的最大权闭合子图问题的应用,最大权闭合子图 = 正权点的权值和 − 最小割。(最大权闭合子图定理)

本题还要输出方案,可以从最小割中推出最大权闭合子图,就是 S−{s},即所有从源点能搜到的点(除源点)。

作者:小小_88
链接:https://www.acwing.com/solution/content/132894/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

————————————————————————————————————————————

 最大权闭合图详解:最大权闭合子图的基本概念 - AcWing

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 1e2 + 10, M = (50*50+N) * 2 + 10, INF = 0x3f3f3f3f;
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;
int q[N], d[N], cur[N];
bool st[N];void add(int a, int b, int c) {e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}bool bfs() {int hh = 0, tt = 0;memset(d, -1, sizeof d);q[0] = S, d[S] = 0, cur[S] = h[S];while (hh <= tt) {int t = q[hh++];for (int i = h[t]; i != -1; i = ne[i]) {int j = e[i];if (d[j] == -1 && f[i]) {d[j] = d[t] + 1;cur[j] = h[j];if (j == T)return 1;q[++tt] = j;}}}return 0;
}int find(int u, int limit) {if (u == T)return limit;int flow = 0;for (int i = cur[u]; i != -1 && flow < limit; i = ne[i]) {int j = e[i];cur[u] = i;if (d[j] == d[u] + 1 && f[i]) {int t = find(j, min(f[i], limit - flow));if (!t)d[j] = -1;f[i] -= t, f[i ^ 1] += t, flow += t;}}return flow;
}int dinic() {int ret = 0, flow;while (bfs())while (flow = find(S, INF))ret += flow;return ret;
}void dfs(int u) {st[u] = 1;for (int i = h[u]; i != -1; i = ne[i]) {int j = e[i];if (!st[j] && f[i])dfs(j);}
}int main() {cin >> m >> n;getchar();memset(h, -1, sizeof h);S = 0, T = n + m + 1;int tot = 0;for (int i = 1; i <= m; i++) {int w, id;string line;getline(cin, line);stringstream ssin(line);ssin >> w;tot += w;add(S, i, w);while (ssin >> id)add(i, id + m, INF);}for (int i = 1, a; i <= n; i++) {scanf("%d", &a);add(i + m, T, a);}int ret = dinic();dfs(S);for (int i = 1; i <= m; i++) {if (st[i])printf("%d ", i);}cout << endl;for (int i = m + 1; i <= n + m; i++) {if (st[i])printf("%d ", i-m);}cout << endl;cout << tot - ret << endl;return 0;
}

 

 

这篇关于2176. 太空飞行计划问题(最小割,最大权闭合图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767075

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例