转载大神神作之识狗君:Server端实现

2024-03-01 23:59

本文主要是介绍转载大神神作之识狗君:Server端实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:

http://blog.csdn.net/mogoweb https://blog.csdn.net/mogoweb/article/details/86166435

当微信小程序遇上TensorFlow:Server端实现

 

 

 

又是一年一度的十一黄金旅游周,你是在景区看人从众叕,还是在高速公路上观看大妈打太极呢?旅游黄金周我一般是尽量不出门,这个十一也不例外。十月一日跑了一个半马迎接国庆,十月二号选择去了一个偏门的景点:张之洞与武汉博物馆。今天则宅在家,吃吃喝喝之余,琢磨起识别狗狗的微信小程序。

 

 

 

自打想到开发一款识别狗狗的app,我的第一直觉是应该开发一款微信小程序。相对于手机原生app,微信小程序具有开发和部署简单,特别是无需安装,即用即走,特别适合这种功能单一,偶尔用一用的app。

实现方案,首先想到的是TensorFlow.js,手机端实现深度学习,无需服务器端,但是TensorFlow.js并不支持微信小程序,无奈只得选择小程序 + server的模式。而我并不擅长web + server的开发,所以在《这个中秋,我开发了一个识别狗狗的app》中谈到,我先使用TensorFlow Lite实现了一个Android App。这个Android App 更多的是一个实验性的项目,这个国庆节,空余时间比较多,决定整一整微信小程序。

因为采用端加server的模式,图片识别在server端完成,所以主要功能实现在server端。我们就先来谈一谈Server端的实现。

TensorFlow Serving

Server端的实现方案有好多种,C++/Java/Python都可以,我一度甚至考虑采用Node.js实现。上周浏览Google开发者大会资料时发现,TensorFlow已经提供了服务器部署方案: TensorFlow Serving。

TensorFlow Serving是一种灵活的高性能服务系统,适用于机器学习模型,专为生产环境而设计。 TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API。 TensorFlow Serving提供与TensorFlow模型的一揽子集成方案,也可以轻松扩展以服务于其他类型的模型。

详细资料请访问: tensorflow.google.cn/serving/

TensorFlow Serving正在不断完善中,直接参考示例并不能实现需要的功能,在多方查找资料之后,终于把整个流程走通。

SavedModel

TensorFlow提供两种模型格式:

  • checkpoints,这是一种依赖于创建模型的代码的格式。
  • SavedModel,这是一种独立于创建模型的代码的格式。

SaveModel是一种与语言无关,可恢复的密封式序列化格式。TensorFlow提供了多种与SavedModel交互的机制,如tf.saved_model API、Estimator API和CLI。TensorFlow Serving需要使用SavedModel格式的模型文件。

retrain并保存为SavedModel

在《这个中秋,我开发了一个识别狗狗的app》一文中提到,我们不需要从头训练识别狗狗的深度学习模型,而是采用迁移学习,在现有模型的基础上再训练。考虑到模型是部署到服务器端,所以我选择了识别能力更强的Inception V3模型。

带标签的狗狗数据集采用stanford dog datasets,请自行下载并解压,然后执行如下命令进行训练:

python retrain.py --image_dir=./Images --saved_model_dir=models/inception_v3
复制代码

训练的模型保存于models/inception_v3/1,其中1是版本号,可以通过retrain.py脚本的命令行参数进行指定。

安装tensorflow model server

在Ubuntu下这个非常容易,只需要使用下面的命令即可:

sudo apt install tensorflow-model-server
复制代码

为了开发方便,需要安装TensorFlow Serving Python API:

pip install tensorflow-serving-api
复制代码

启动tensorflow model server

按照文档,启动tensorflow model server非常简单,这里加上rest_api_port参数是启动server,并提供RESTful API,这种API接口方便微信小程序与之进行通信。

tensorflow_model_server --rest_api_port=8501 --model_base_path=$PWD/models/inception_v3
复制代码

但是通过这种方法启动tensorflow model server,整了半天也没有和client进行上通讯,正在一筹莫展的时候,看到github上的一个项目:github.com/tobegit3hub…

 

 

 

简单说,Simple TensorFlow Serving是一个TensorFlow Serving的封装,是机器学习模型的通用且易于使用的服务。

其野心也很大,号称支持如下功能:

  • 支持分布式TensorFlow模型
  • 支持常规RESTful / HTTP API
  • 支持GPU加速推理
  • 支持curl和其他命令行工具
  • 支持客户端使用任何编程语言
  • 支持自动生成客户端代码,无需编码
  • 支持图像模型中使用原始图片文件进行推断
  • 支持详细请求的统计指标
  • 支持同时为多个模型提供服务
  • 支持动态的在线和离线模型版本
  • 支持为TensorFlow模型加载新的自定义操作
  • 通过可配置的基本身份验证支持安全身份验证
  • 支持TensorFlow / MXNet / PyTorch / Caffe2 / CNTK / ONNX / H2o / Scikit-learn / XGBoost / PMML 等多种模型

我最看中的就是它的自动生成客户端代码功能,在没有这个之前,我查找了很多资料,都没有搞定客户端与服务端之间的通信。另外它还提供了一个web界面,可以查看模型的结构以及signature(签名),这个signature也是折腾了我好久都没有搞定的。

浏览器访问: http://127.0.0.1:8500,web界面如下:

 

 

 

Simple TensorFlow Serving的安装非常简单:

pip install simple_tensorflow_serving
复制代码

接下来启动server:

simple_tensorflow_serving --model_base_path="./models/inception_v3" &
复制代码

客户端

微信小程序的开发还没有开始学,先用python写一个客户端先测试一下,我们可以使用自动生成客户端代码功能:

curl http://localhost:8500/v1/models/default/gen_client?language=python > test_client.py
复制代码

自动生成的代码如下:

#!/usr/bin/env pythonimport requestsdef main():endpoint = "http://ilego.club:8500"json_data = {"model_name": "default", "data": {"image": [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]]}}result = requests.post(endpoint, json=json_data)print(result.text)if __name__ == "__main__":main()
复制代码

可以看出,客户端向server端post一段JSON数据,并获取结果。在这段代码的基础上进行修改,加入图片读取,图片缩放并转换为JSON格式数据,即完成测试客户端代码,代码请参考: github.com/mogoweb/aie…

可以尝试测试一张狗狗图片:

python test_client.py --image=./Images/n02116738-African_hunting_dog/n02116738_1105.jpg
复制代码

结果如下:

n02116738 african hunting dog 0.780203342438
n02115913 dhole 0.0102733308449
n02092002 scottish deerhound 0.00600153999403
复制代码

前面是类别标签,后面是属于某个类别的概率,上面结果中Top 1概率0.78。

总结

这个服务器端远还没有达到完善,还存在一下问题:

  1. 客户端与服务器端的图片采用JSON格式传递,图像数据由二进制转为JSON字符串,空间效率低,后面考虑对图像数据进行base64编码。
  2. 预测的效率比较第,从发出请求到收到回应,有几十秒的时间,还没有查找瓶颈在何处。
  3. 并发支持,因为现在只是一个简单的测试,如果考虑到产品阶段,多个手机的微信小程序同时进行识别,这还是会有很多工作需要做的。

好了,关于服务端的开发部署就先到这里,下一篇文章我将谈谈微信小程序的开发和与server端的通信,敬请关注!

本文完整代码请参考:github.com/mogoweb/aie…

这篇关于转载大神神作之识狗君:Server端实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764268

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、