【C++】结构体内存对齐详解

2024-03-01 23:28
文章标签 c++ 详解 结构 对齐 体内

本文主要是介绍【C++】结构体内存对齐详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

规则

1.第一个成员在结构体变量偏移量为0 的地址处,也就是第一个成员必须从头开始。
2.其他成员的偏移量为对齐数**(该成员的大小 与 编译器默认的一个对齐数 中的较小值)**的整数倍。
3.结构体总大小对最大对齐数(通过最大成员来确定)的整数倍。

所有成员在内存中的位置是按照声明顺序决定的

代码解释

第一个和第三个规则好理解,上代码解释下第二个规则

#include<iostream>
#include<string>
#include<stddef.h>
using namespace std;#pragma pack(8) //修改默认对齐数为8struct A {char a;  char b;double c;
};struct B {char a;double b;char c;
};int main() {cout << "结构体A的大小:" << sizeof(A) << " a偏移-" <<offsetof(A, a) << " b偏移-" << offsetof(A, b) << " c偏移-" << offsetof(A, c) << endl;cout << "结构体B的大小:" << sizeof(B) << " a偏移-" <<offsetof(B, a) << " b偏移-" << offsetof(B, b) << " c偏移-" << offsetof(B, c) << endl;system("pause");
}

在这里插入图片描述

假设我们申请到的内存的初始编号为【000】

结构体A

基于第一个规则,第一个成员a的偏移为0,所以存储在【000】的内存中
成员b是一个char类型,该成员占用1个字节,而此时的编译器对齐数为8,根据规则2, 取两者的较小值就为1,所以成员b的偏移量应该为1的整数倍,所以成员b存储在【001】,偏移量就为1
同理,成员c的偏移量应该是8的整数倍,所以要存储在【008】-【015】,偏移量为8
所以结构体A实际占用了【000】-【015】的内存,大小为16,其中a在【000】,b在【001】,【002】-【007】没有存储数据,c在【008】-【015】

结构体B

成员a的偏移为0,所以存储在【000】的内存中
成员b的对齐数为8,所以要找到下一块以8的整数倍的内存,找到【008】,所以存储在【008 】-【015】的内存中,偏移为8
成员c的对齐数为1,所以存储在【016】,偏移为16
目前来看结构体B实际占用了17个字节,根据规则3,向上取8的整数倍,所以结构体B实际占用了24个字节,【000】-【023】,其中a在【000】,b在【008】-【015】,c在【016】,【001】-【007】和【017】-【023】没有存储内容

刚才是 编译器的对齐数 比 成员数据类型大 的情况,我们再看一个 编译器对齐数 小于 成员数据类型的情况

#include<iostream>
#include<string>
#include<stddef.h>
using namespace std;#pragma pack(4) //修改默认对齐数为4struct B
{char a;double b;char c;
};int main()
{B TempData;TempData.a = 'a';TempData.b = 12;TempData.c = 'c';cout << *(&(TempData.a)+12) << endl;system("pause");
}

这次我们修改了编译器的对齐数为4
成员a还是在【000】的位置,偏移为0
成员b是double类型,占用8个字节,编译器的对齐数是4,取二者的较小值就是4,所以b此时要存储在4的整数倍的地址上,【004】-【011】,偏移为4
成员c就存储在成员b之后,【012】
所以结构体b的大小就是16 (8的整数倍),a在【000】,b在【004】-【011】,c在【012】,【001】-【003】和【013】-【015】没有存储数据

成员数据可以直接根据偏移量来获取到,我们取到a的地址,然后再偏移12个字节就可以获取到c的地址
在这里插入图片描述

看完以上两个示例。内存对齐应该可以理解了,但仔细一想,为什么会有内存对齐,这不纯粹就是浪费空间么, 不对齐不是可以节省空间么

内存对齐的原因

平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于:为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。所以内存对齐能够提高访问效率。

解释一下性能原因, 现在机器分为32位和64位, 位数也就是CPU的字长, 也就是CPU一次能读取的数据大小, 64位就是8字节, 这里的CPU读取位数 你们可以和上面的 编译器的对齐位数 往一起想

如果没有内存对齐的情况, 我们以下面这个结构体为例, 如果你要读取到b, 那么需要先读取8个字节, 【000】-【007】,这里的【000】存储的是a,【001】-【007】存储的是b的一部分,这时CPU还要再读取一次【008】-【015】, 然后把【001】-【008】拼凑为b, 这里就读取了两次才获取到b

struct B {char a;double b;char c;
};

所以内存对齐本质上就是一种空间换时间的做法

这篇关于【C++】结构体内存对齐详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764181

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝