【C++】结构体内存对齐详解

2024-03-01 23:28
文章标签 c++ 详解 结构 对齐 体内

本文主要是介绍【C++】结构体内存对齐详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

规则

1.第一个成员在结构体变量偏移量为0 的地址处,也就是第一个成员必须从头开始。
2.其他成员的偏移量为对齐数**(该成员的大小 与 编译器默认的一个对齐数 中的较小值)**的整数倍。
3.结构体总大小对最大对齐数(通过最大成员来确定)的整数倍。

所有成员在内存中的位置是按照声明顺序决定的

代码解释

第一个和第三个规则好理解,上代码解释下第二个规则

#include<iostream>
#include<string>
#include<stddef.h>
using namespace std;#pragma pack(8) //修改默认对齐数为8struct A {char a;  char b;double c;
};struct B {char a;double b;char c;
};int main() {cout << "结构体A的大小:" << sizeof(A) << " a偏移-" <<offsetof(A, a) << " b偏移-" << offsetof(A, b) << " c偏移-" << offsetof(A, c) << endl;cout << "结构体B的大小:" << sizeof(B) << " a偏移-" <<offsetof(B, a) << " b偏移-" << offsetof(B, b) << " c偏移-" << offsetof(B, c) << endl;system("pause");
}

在这里插入图片描述

假设我们申请到的内存的初始编号为【000】

结构体A

基于第一个规则,第一个成员a的偏移为0,所以存储在【000】的内存中
成员b是一个char类型,该成员占用1个字节,而此时的编译器对齐数为8,根据规则2, 取两者的较小值就为1,所以成员b的偏移量应该为1的整数倍,所以成员b存储在【001】,偏移量就为1
同理,成员c的偏移量应该是8的整数倍,所以要存储在【008】-【015】,偏移量为8
所以结构体A实际占用了【000】-【015】的内存,大小为16,其中a在【000】,b在【001】,【002】-【007】没有存储数据,c在【008】-【015】

结构体B

成员a的偏移为0,所以存储在【000】的内存中
成员b的对齐数为8,所以要找到下一块以8的整数倍的内存,找到【008】,所以存储在【008 】-【015】的内存中,偏移为8
成员c的对齐数为1,所以存储在【016】,偏移为16
目前来看结构体B实际占用了17个字节,根据规则3,向上取8的整数倍,所以结构体B实际占用了24个字节,【000】-【023】,其中a在【000】,b在【008】-【015】,c在【016】,【001】-【007】和【017】-【023】没有存储内容

刚才是 编译器的对齐数 比 成员数据类型大 的情况,我们再看一个 编译器对齐数 小于 成员数据类型的情况

#include<iostream>
#include<string>
#include<stddef.h>
using namespace std;#pragma pack(4) //修改默认对齐数为4struct B
{char a;double b;char c;
};int main()
{B TempData;TempData.a = 'a';TempData.b = 12;TempData.c = 'c';cout << *(&(TempData.a)+12) << endl;system("pause");
}

这次我们修改了编译器的对齐数为4
成员a还是在【000】的位置,偏移为0
成员b是double类型,占用8个字节,编译器的对齐数是4,取二者的较小值就是4,所以b此时要存储在4的整数倍的地址上,【004】-【011】,偏移为4
成员c就存储在成员b之后,【012】
所以结构体b的大小就是16 (8的整数倍),a在【000】,b在【004】-【011】,c在【012】,【001】-【003】和【013】-【015】没有存储数据

成员数据可以直接根据偏移量来获取到,我们取到a的地址,然后再偏移12个字节就可以获取到c的地址
在这里插入图片描述

看完以上两个示例。内存对齐应该可以理解了,但仔细一想,为什么会有内存对齐,这不纯粹就是浪费空间么, 不对齐不是可以节省空间么

内存对齐的原因

平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于:为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。所以内存对齐能够提高访问效率。

解释一下性能原因, 现在机器分为32位和64位, 位数也就是CPU的字长, 也就是CPU一次能读取的数据大小, 64位就是8字节, 这里的CPU读取位数 你们可以和上面的 编译器的对齐位数 往一起想

如果没有内存对齐的情况, 我们以下面这个结构体为例, 如果你要读取到b, 那么需要先读取8个字节, 【000】-【007】,这里的【000】存储的是a,【001】-【007】存储的是b的一部分,这时CPU还要再读取一次【008】-【015】, 然后把【001】-【008】拼凑为b, 这里就读取了两次才获取到b

struct B {char a;double b;char c;
};

所以内存对齐本质上就是一种空间换时间的做法

这篇关于【C++】结构体内存对齐详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764181

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1