netlink原理及应用

2024-03-01 13:52
文章标签 应用 原理 netlink

本文主要是介绍netlink原理及应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是netlink

netlink是一种基于网络的通信机制,允许内核内部、内核与用户态应用之间甚至用户态应用之间进行通信;netlink的主要作用是内核与用户态之间通信;它的思想是,基于BSD的socket使用网络框架在内核和用户态之间进行通信;

为什么要有netlink

内核中有其他一些方法可以实现用户空间和内核通信,如procfs、sysfs和ioctrl等;netlink相比于这些方法,有以下优势:

  • 任何一方都不需要轮询;如果通过文件通信,用户态应用需要不断检查是否有新消息到达;
  • netlink使用简单,它是基于socket的,可以使用socket api;
  • 只需要在netlink协议族中新增加一个协议;使用netlink的内核部分可以采用模块的方式实现,之后使用socket api进行通信;
  • 内核可以直接向用户层发送信息,而无需用户层事先请求;
  • netlink支持单播、组播;内核模块可以把消息发送到一个多播组;

数据结构

struct sockaddr_nl

netlink是基于网络的,使用socket通信;类似于其它网络协议,每个netlink socket都需要分配一个地址;struct sockaddr_nl表示netlink地址;

struct sockaddr_nl {__kernel_sa_family_t	nl_family;	/* AF_NETLINK	*/unsigned short	nl_pad;		/* zero		*/__u32		nl_pid;		/* port ID	*/__u32		nl_groups;	/* multicast groups mask */
};
  • nl_family,固定为AF_NETLINK,表示netlink协议族;

netlink协议族包含多个协议,最大值32;理论上32以内未被占用的协议号,可以用于自定义netlink协议,但这种方法并不规范,对于未来更新内核版本兼容性不友好;更加合适的方法,是在generic netlink协议族中,添加子协议,如nl80211就是generic netlink的一个子协议;

#define NETLINK_ROUTE		0	/* Routing/device hook				*/
#define NETLINK_UNUSED		1	/* Unused number				*/
#define NETLINK_USERSOCK	2	/* Reserved for user mode socket protocols 	*/
#define NETLINK_FIREWALL	3	/* Unused number, formerly ip_queue		*/
#define NETLINK_SOCK_DIAG	4	/* socket monitoring				*/
#define NETLINK_NFLOG		5	/* netfilter/iptables ULOG */
#define NETLINK_XFRM		6	/* ipsec */
#define NETLINK_SELINUX		7	/* SELinux event notifications */
#define NETLINK_ISCSI		8	/* Open-iSCSI */
#define NETLINK_AUDIT		9	/* auditing */
#define NETLINK_FIB_LOOKUP	10	
#define NETLINK_CONNECTOR	11
#define NETLINK_NETFILTER	12	/* netfilter subsystem */
#define NETLINK_IP6_FW		13
#define NETLINK_DNRTMSG		14	/* DECnet routing messages */
#define NETLINK_KOBJECT_UEVENT	15	/* Kernel messages to userspace */
#define NETLINK_GENERIC		16
/* leave room for NETLINK_DM (DM Events) */
#define NETLINK_SCSITRANSPORT	18	/* SCSI Transports */
#define NETLINK_ECRYPTFS	19
#define NETLINK_RDMA		20
#define NETLINK_CRYPTO		21	/* Crypto layer */
#define NETLINK_SMC		22	/* SMC monitoring */#define NETLINK_INET_DIAG	NETLINK_SOCK_DIAG#define MAX_LINKS 32	
  • nl_pid,socket的唯一标识符;对内核自身来说,该字段是0,而用户空间的应用程序通常使用其线程组ID;netlink并没有要求该字段是进程ID,它可以是任何值,只需要保证其唯一性;使用线程组ID不过是方便而已;nl_pid是一个单播地址;
  • nl_groups,多播组掩码,每个bit表示一个多播组;每个netlink协议族最多支持32个多播组;

netlink内核核心函数

netlink_kernel_create

内核创建netlink socket;

static inline struct sock *
netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg)
{return __netlink_kernel_create(net, unit, THIS_MODULE, cfg);
}
  • net,表示网络命令空间;
  • uint,表示netlink子协议族,如:
#define NETLINK_ROUTE		0	/* Routing/device hook				*/
#define NETLINK_GENERIC		16
  • cfg,netlink kernel创建socket的可选参数;其中,input是该内核netlink模块收到消息后的处理函数;
/* optional Netlink kernel configuration parameters */
struct netlink_kernel_cfg {unsigned int	groups;unsigned int	flags;void		(*input)(struct sk_buff *skb);struct mutex	*cb_mutex;int		(*bind)(struct net *net, int group);void		(*unbind)(struct net *net, int group);bool		(*compare)(struct net *net, struct sock *sk);
};

netlink消息格式

netlink消息由两部分组成:消息头和消息体;消息头固定为16字节,消息体长度可变;
image.png

消息头

消息头定义如下:

struct nlmsghdr {__u32		nlmsg_len;	/* Length of message including header */__u16		nlmsg_type;	/* Message content */__u16		nlmsg_flags;	/* Additional flags */__u32		nlmsg_seq;	/* Sequence number */__u32		nlmsg_pid;	/* Sending process port ID */
};
  • nlmsg_len,整个消息的长度,包括消息头;
  • nlmsg_type,消息类型,netlink定义一下四种通用消息类型
#define NLMSG_NOOP		0x1	/* Nothing.		*/
#define NLMSG_ERROR		0x2	/* Error		*/
#define NLMSG_DONE		0x3	/* End of a dump	*/
#define NLMSG_OVERRUN		0x4	/* Data lost		*/#define NLMSG_MIN_TYPE		0x10	/* < 0x10: reserved control messages */
  • nlmsg_flags,消息标志;如NLM_F_REQUEST
/* Flags values */#define NLM_F_REQUEST		0x01	/* It is request message. 	*/
#define NLM_F_MULTI		0x02	/* Multipart message, terminated by NLMSG_DONE */
#define NLM_F_ACK		0x04	/* Reply with ack, with zero or error code */
#define NLM_F_ECHO		0x08	/* Echo this request 		*/
#define NLM_F_DUMP_INTR		0x10	/* Dump was inconsistent due to sequence change */
#define NLM_F_DUMP_FILTERED	0x20	/* Dump was filtered as requested *//* Modifiers to GET request */
#define NLM_F_ROOT	0x100	/* specify tree	root	*/
#define NLM_F_MATCH	0x200	/* return all matching	*/
#define NLM_F_ATOMIC	0x400	/* atomic GET		*/
#define NLM_F_DUMP	(NLM_F_ROOT|NLM_F_MATCH)/* Modifiers to NEW request */
#define NLM_F_REPLACE	0x100	/* Override existing		*/
#define NLM_F_EXCL	0x200	/* Do not touch, if it exists	*/
#define NLM_F_CREATE	0x400	/* Create, if it does not exist	*/
#define NLM_F_APPEND	0x800	/* Add to end of list		*//* Flags for ACK message */
#define NLM_F_CAPPED	0x100	/* request was capped */
#define NLM_F_ACK_TLVS	0x200	/* extended ACK TVLs were included */
  • nlmsg_seq,消息序列号,表示一系列消息之间在时间上的前后关系;也可以通过request消息和ack消息使用相同的序列号,保证消息不丢失;
  • nlmsg_pid,消息发送者的port id;

消息体

netlink协议并没有严格要求消息体的格式,可以发送任意消息;但一般标准做法,消息体是用nlattr,即属性,采用tlv的形式;消息体组织形式如下:
image.png

struct nlattr定义如下:

/**  <------- NLA_HDRLEN ------> <-- NLA_ALIGN(payload)-->* +---------------------+- - -+- - - - - - - - - -+- - -+* |        Header       | Pad |     Payload       | Pad |* |   (struct nlattr)   | ing |                   | ing |* +---------------------+- - -+- - - - - - - - - -+- - -+*  <-------------- nlattr->nla_len -------------->*/struct nlattr {__u16           nla_len;__u16           nla_type;
};

netlink协议族组织形式

netlink协议族、子协议族、子协议、命令,组织结构如下:
image.png

如何新增netlink子协议族

如何将自定义netlink协议加入到netlink协议族中,于NETLINK_GENERIC同一级别?只需定义一个netlink协议号即可,由于netlink对消息体格式不做强制要求,可以传输简单的字符串;实际使用中,不建议这样做,但作为学习,可以简单的这样操作;实际使用中增加自定义netlink协议,建议加入到NETLINK_GENERIC协议族中,类似nl80211这样;
下面代码,是直接在netlink中直接加入新的协议,定义协议号为30;内核中新增一个模块,处理该协议的消息;应用程序通过该协议,和内核通信;简单起见,直接传输字符串;应用程序先向内核发送一条消息,内核收到消息后进行回复;

内核代码

内核代码如下:


#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <net/sock.h>
#include <linux/netlink.h>#define NETLINK_TEST     30
#define MSG_LEN            125MODULE_LICENSE("GPL");struct sock *nlsk = NULL;
extern struct net init_net;int send_usrmsg(char *pbuf, uint16_t len, uint32_t pid)
{struct sk_buff *nl_skb;struct nlmsghdr *nlh;int ret;/* Allocate a new netlink message */nl_skb = nlmsg_new(len + 1, GFP_ATOMIC);if(!nl_skb){printk("\nError:netlink alloc failure.\n\n");return -1;}/* Add a new netlink message to an skbpid是0,说明是从内核发送的*/nlh = nlmsg_put(nl_skb, 0, 0, NETLINK_TEST, len, 0);if(nlh == NULL){printk("\nError:nlmsg_put failaure. \n\n");nlmsg_free(nl_skb);return -1;}/* copy payload */memcpy(nlmsg_data(nlh), pbuf, len);ret = netlink_unicast(nlsk, nl_skb, pid, MSG_DONTWAIT);return ret;
}static void netlink_rcv_msg(struct sk_buff *skb)
{struct nlmsghdr *nlh = NULL;char *umsg = NULL;char *kmsg = "Hello user's program.";if(skb->len >= nlmsg_total_size(0)){nlh = nlmsg_hdr(skb);umsg = NLMSG_DATA(nlh);if(umsg){printk("kernel recv from user space: %s\n", umsg);send_usrmsg(kmsg, strlen(kmsg), nlh->nlmsg_pid);}}
}struct netlink_kernel_cfg cfg = {.input  = netlink_rcv_msg, /* set recv callback */
};int test_netlink_init(void)
{/* create netlink socket */nlsk = (struct sock *)netlink_kernel_create(&init_net, NETLINK_TEST, &cfg);if(nlsk == NULL){printk("\nError:netlink_kernel_create error !\n");return -1;}printk("\ntest_netlink_init\n");return 0;
}void test_netlink_exit(void)
{if (nlsk){netlink_kernel_release(nlsk); /* release ..*/nlsk = NULL;}printk("test_netlink_exit!\n");
}module_init(test_netlink_init);
module_exit(test_netlink_exit);
#
#Desgin of Netlink
#
MODULE_NAME :=nl_test_kernel
obj-m:=$(MODULE_NAME).oKERNELDIR ?=/lib/modules/$(shell uname -r)/build
PWD :=$(shell pwd)all:$(MAKE) -C $(KERNELDIR) M=$(PWD)clean:$(MAKE) -C $(KERNELDIR) M=$(PWD) clean

nl_test_kernel.cMakefile放到同一目录下;直接make,编译生成nl_test_kernel.ko
insmod nl_test_kernel.ko,将该模块加载到内核中;内核现在就可以处理NETLINK_TEST的消息了;
image.png

应用程序代码

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <string.h>
#include <linux/netlink.h>
#include <stdint.h>
#include <unistd.h>
#include <errno.h>#define NETLINK_TEST    30
#define MSG_LEN         125
#define MAX_PLOAD       125typedef struct _user_msg_info
{struct nlmsghdr hdr;char  msg[MSG_LEN];
} user_msg_info;int main(int argc, char **argv)
{int skfd;int ret;user_msg_info u_info;socklen_t len;struct nlmsghdr *nlh = NULL;struct sockaddr_nl saddr, daddr;char *umsg = "Hello Netlink protocol.";/* 创建NETLINK socket */skfd = socket(AF_NETLINK, SOCK_RAW, NETLINK_TEST);if(skfd == -1){perror("\nError:Create socket error.\n");return -1;}memset(&saddr, 0, sizeof(saddr));saddr.nl_family = AF_NETLINK; //AF_NETLINKsaddr.nl_pid = getpid();  //端口号(port ID)saddr.nl_groups = 0;if(bind(skfd, (struct sockaddr *)&saddr, sizeof(saddr)) != 0){perror("\nError:bind() error.\n");close(skfd);return -1;}memset(&daddr, 0, sizeof(daddr));daddr.nl_family = AF_NETLINK;daddr.nl_pid = 0; // to kerneldaddr.nl_groups = 0;nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PLOAD));memset(nlh, 0, sizeof(struct nlmsghdr));nlh->nlmsg_len = NLMSG_SPACE(MAX_PLOAD);nlh->nlmsg_flags = 0;nlh->nlmsg_type = 0;nlh->nlmsg_seq = 0;nlh->nlmsg_pid = saddr.nl_pid; //self portmemcpy(NLMSG_DATA(nlh), umsg, strlen(umsg));ret = sendto(skfd, nlh, nlh->nlmsg_len, 0, (struct sockaddr *)&daddr, sizeof(struct sockaddr_nl));if(!ret){perror("\nError:sendto error.\n");close(skfd);exit(-1);}printf("\nApplication-->Send to kernel:%s\n\n", umsg);memset(&u_info, 0, sizeof(u_info));len = sizeof(struct sockaddr_nl);ret = recvfrom(skfd, &u_info, sizeof(user_msg_info), 0, (struct sockaddr *)&daddr, &len);if(!ret){perror("\nError:recv form kernel error.\n");close(skfd);exit(-1);}printf("\nApplication-->From kernel:%s\n\n", u_info.msg);close(skfd);free((void *)nlh);return 0;
}

gcc -o nl_test_user nl_test_user.c

测试结果

image.png

如何新增自定义netlink协议

如何在NETLINK_GENERIC中新增netlink协议?
参考nl80211

模块初始化时,通过genl_register_family注册通用netlink协议族,将命令以及处理函数进行注册;

/* initialisation/exit functions */int __init nl80211_init(void)
{int err;err = genl_register_family(&nl80211_fam);if (err)return err;err = netlink_register_notifier(&nl80211_netlink_notifier);if (err)goto err_out;return 0;err_out:genl_unregister_family(&nl80211_fam);return err;
}
/*** genl_register_family - register a generic netlink family* @family: generic netlink family** Registers the specified family after validating it first. Only one* family may be registered with the same family name or identifier.** The family's ops, multicast groups and module pointer must already* be assigned.** Return 0 on success or a negative error code.*/
int genl_register_family(struct genl_family *family)
static const struct genl_ops nl80211_ops[] = {{.cmd = NL80211_CMD_GET_WIPHY,.doit = nl80211_get_wiphy,.dumpit = nl80211_dump_wiphy,.done = nl80211_dump_wiphy_done,.policy = nl80211_policy,/* can be retrieved by unprivileged users */.internal_flags = NL80211_FLAG_NEED_WIPHY |NL80211_FLAG_NEED_RTNL,},{.cmd = NL80211_CMD_SET_WIPHY,.doit = nl80211_set_wiphy,.policy = nl80211_policy,.flags = GENL_UNS_ADMIN_PERM,.internal_flags = NL80211_FLAG_NEED_RTNL,},......
}

这篇关于netlink原理及应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/762674

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象