2022年CSP-J认证 CCF信息学奥赛C++ 中小学初级组 第一轮真题-阅读程序题解析

本文主要是介绍2022年CSP-J认证 CCF信息学奥赛C++ 中小学初级组 第一轮真题-阅读程序题解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2022 CCF认证第一轮(CSP-J)真题

二、阅读程序题

(程序输入不超过数组或字符串定义的范围,判断题正确填√错误填X;除特殊说明外,判断题 1.5分,选择题3分,共计4 分)

第一题 位运算

1 #include <iostream>
2 
3 using namespace std;
4	
5 int main()
6 {
7	unsigned short x, y;
8	cin >> x >> y;
9	x=(x|x<< 2) & 0x33;
10	x= (x|x << 1) & 0x55;
11	y = (y|y << 2) & 0x33;
12	y =(y|y << 1)& 0x55;
13	unsigned short z=x|y << 1;
14	cout << z << endl;
15	return 0;
16 }

程序分析

主要考查小朋友们读写程序能力和逻辑思维能力,此程序实现了一个位运算的操作,输入两个无符号短整数x和y,经过一系列的位运算操作后,得到一个新的无符号短整数z,并将其输出。

  • 具体来说,程序中使用了以下位运算符和操作:
  • 位移运算符:<< 用于将一个数的二进制位向左移动指定的位数。
  • 位或运算符:| 用于对两个数的二进制位进行位或操作。
  • 位与运算符:& 用于对两个数的二进制位进行位与操作。
  • 程序的执行步骤如下: 从标准输入中读取两个无符号短整数x和y。
  • 对变量x进行位运算,将x左移2位并与0x33(也就是二进制00110011)进行位与操作,再将结果与x左移1位进行位或操作并与0x55(也就是二进制01010101)进行位与操作,得到的结果存入变量x中。
  • 对变量y进行位运算,将y左移2位并与0x33进行位与操作,再将结果与y左移1位进行位或操作并与0x55进行位与操作,得到的结果存入变量y中。
  • 将x与y左移1位进行位或操作,并将结果存入变量z中。 将变量z输出到标准输出。

假设输入的 x、y 均是不超过 15 的自然数,完成下面的判断题和单选题

判断题

1、删去第 7 行与第 13 行的 unsigned,程序行为不变

2、将第 7 行与第 13 行的 short 均改为 char,程序行为不变

3、程序总是输出一个整数“0”

4、当输入为“2 2”时,输出为“10“

5、当输入为“2 2”时,输出为“59

答案:1√ 2 × 3 × 4 × 5 ×

答案分析:

1、因为题目要求输入的数值为不超过15的自然数,所以删除无符号标记不影响

2、如果调整为char类型,最后输出z的时候会输出字符而不是整数

3、根据程序的分析可以得出输出结果会根据输入数字而发生变化

4、5、当输入为2 2的时候,二进制都是0010,运算后z的值为1100,对应输出的结果应该是12

单选题

6)、当输入为“13 8”时,输出为

A、"0"

B、"209"

C、"197"

D、"226"

答案:B

答案分析:根据程序分析,13对应二进制为:1101,8对应二进制为:1000,运行后z得到的值为11010001,转换成十进制为209,答案B

第二题 最小代价

1 #include <algorithm>
2 #include <iostream>
3 #include <limits>
4
5 using namespace std;
6
7 const int MAXN = 105;
8 const int MAXK = 105;
9
10 int h[MAXN][MAXK];
11
12 int f(int n, int m)
13 {
14	if(m == 1)return n;
15	if (n == 0) return 0;
16	
17	int ret = numeric_limits<int>::max();
18	for (int i= 1;i <= n; i++)
19		ret = min(ret, max(f(n-i,m),f(i-1,m-1))+ 1);
20	return ret;
21 }
22
23 int g(int n, int m)
24 {
25	for (int i= 1;i <= n; i++)
26		h[i][1] = i;
27	for (int j= 1;j<= m; j++)
28		h[0][j] = 0;
29
30	for (int i= 1;i<= n; i++){
31		for (int j= 2;j<= m; j++){
32			h[i][j]= numeric_limits<int>::max();
33			for (int k = 1; k <= i; k++)
34				h[i][j] = min(
35              h[i][j],
36              max(h[i-k][j], h[k-1][j-1])+ 1);
37		}
38	}
39	
40	return h[n][m];
41 }
42
43 int main()
44 {
45	int n, m;
46	cin >> n >> m;
47	cout << f(n, m) << endl << g(n, m) << endl;
48	return 0;
49 }

程序分析

主要考查小朋友们读写程序能力和逻辑思维能力,此程序是用来计算将n个元素分成m组的最小代价的问题。

  • 函数f是递归解法,用来计算将n个元素分成m组的最小代价
  • 当m=1时,表示将n个元素分成1组,直接返回n。当n=0时,表示没有元素可以分组,返回0
  • 否则,遍历分割点i,将左边的i个元素分成m-1组,右边的n-i个元素分成1组,取两种情况下的最大代价,然后加上当前的分割点的代价1,最后取所有情况的最小值
  •  函数g是动态规划解法,用来计算将n个元素分成m组的最小代价
  • 先初始化h数组,将h[i][1]设为i,表示将i个元素分成1组的最小代价。
  • 将h[0][j]设为0,表示将0个元素分成j组的最小代价。然后,利用递推关系式,遍历i和j,计算h[i][j],最后返回h[n][m]
  • 主函数中,从输入中读取n和m,然后分别调用f函数和g函数,将结果输出
  • 这个问题的解法是使用动态规划。通过将问题划分为子问题,然后进行递推计算,最终得到最优解。递归解法是通过递归调用来解决子问题,但是可能存在重复计算的问题,所以使用了动态规划的解法来避免重复计算。

假设输入的 n、m 均是不超过 100 的正整数,完成下面的判断题和单选题

判断题

1)、当输入为“7 3”时,第 19 行用来取最小值的 min 函数执行了 449 次

2)、输出的两行整数总是相同的

3)、当 m为1时,输出的第一行总为 n

答案:1× 2 √  3 √ 

答案分析:

1、本题执行起来由于是递归,要具体算确实会比较麻烦,小朋友们可以进行递归模拟,找出相应的规律,最多得到的规律是,当m=3的时候,执行min函数的次数为:(2^(n-1)) * n程序运行后的结果为:2^(7-1) * 7 = 2^6 * 7 = 64 * 7 = 448 

2、根据程序分析,可以看出输出的结果是一样的

3、这问再程序14行就有答案

单选题

4)、 算法 g(n,m)最为准确的时间复杂度分析结果为

A、O(n^3/2m)

B、O(nm)

C、O(n^2m)

D、O(nm^2)

答案:C

答案分析:从程序中就可以看出g函数里面有三层嵌套循环,次数分别为:n,m,n,答案C

5)、当输入为“20 2”时,输出的第一行为

A、"4"

B、"5"

C、"6"

D、"20"

答案:C

答案分析:从程序分析中可以得到,当m等于2的时候,输出的值变化为:1、2、2、3、3、3、4、4、4、4....,到n=20的时候,输出的值为6,答案C

6)、当输入为“100 100”时,输出的第一行为

A、"6"

B、"7"

C、"8"

D、"9"

答案:B

答案分析:本题还是稍微有点费手和费脑,有没有大佬可以评论区分享一下

第三题 平方根求解

1 #include <iostream>
2
3 using namespace std;
4
5 int n, k;
6
7 int solve1()
8 {
9	int l= 0,r= n;
10	while (l <= r) {
11		int mid =(l+ r)/ 2;
12		if(mid * mid <= n)l= mid + 1;
13		else r = mid - 1;
14	}
15	return l-1;
16 }
17
18 double solve2(double x)
19 {
20	if(x == 0) return x;
21	for (int i = 0;i < k; i++)
22		x = (x+n/x) / 2;
23	return x;
24 }
25
26 int main()
27 {
28	cin >> n >> k;
29	double ans = solve2(solve1());
30	cout << ans <<' '<<(ans * ans == n)<< endl;
31	return 0;
32 }

程序分析

主要考查小朋友们读写程序能力和逻辑思维能力,该程序使用了二分法和牛顿法来求解平方根。

  • 首先,我们来解析solve1()函数。该函数使用二分法来寻找平方根的整数部分
  • 在二分过程中,设定左边界l为0,右边界r为n
  • 然后每次取中间值mid,如果mid的平方小于等于n,则将左边界l更新为mid+1,否则将右边界r更新为mid-1。最终返回l-1
  • solve2()函数。该函数使用牛顿法来近似求解平方根
  • 牛顿法的迭代公式为x = (x + n/x) / 2,其中x为初始值,n为待求平方根的数值
  • 在迭代过程中,对x进行k次迭代。最终返回迭代后的x
  • 在主函数中,程序先读取输入的n和k值
  • 然后调用solve1()函数获取平方根的整数部分,再将该整数部分作为初始值调用solve2()函数进行近似求解
  • 最后输出迭代后的x值和判断该x值的平方是否等于n

假设 int 为 32 位有符号整数类型,输入的 n 是不超过 47000 的自然数、k 是不超过 int表示范围的自然数,完成下面的判断题和单选题

判断题

1) 该算法最准确的时间复杂度分析结果为0(log n+k)

2) 当输入为“9801 1”时,输出的第一个数为“99”

3) 对于任意输入的 n,随着所输入 k的增大,输出的第二个数会变成“1”

4) 该程序有存在缺陷。当输入的n过大时,第 12 行的乘法有可能溢出,因此应当将mid 强制转换为 64 位整数再计算

答案:1√ 2 √ 3  × 4  ×

答案分析:

1、从程序分析可以得出该程序的时间复杂度为二分法的logn加上牛顿法的k,正确

2、从程序分析可以看出,是求平方根,而9801是99的平方,正确

3、从程序分析可以看出,本题是求平方根,求平方根除了完全平方数不然都会有小数,错误

4、从程序分析可以看出,二分法的中间值最大为47000/2 = 23500,平方之后也没有超过int的取值范围,所以并不会溢出,错误

单选题

5) 当输入为“2 1”时,输出的第一个数最接近

A、1

B、1.414

C、1.5

D、2

答案:C

答案分析:从程序分析可以看出,2没有整数平方根,此时x=1,带入牛顿法得到x=(x+n/x)/2=(1+2/1)/2=1.5,答案C

6) 当输入为“3 10”时,输出的第一个数最接近

A、1.7

B、1.732

C、1.75

D、2

答案:B

答案分析:可以参考第五题进行求解最后答案B

7) 当输入为“256 11”时,输出的第一个数

A、等于 16

B、接近但小于 16

C、接近但大于 16

D、前三种情况都有可能

答案:A

答案分析:从程序分析可以看出,256是16的完全平方数,所以不管后面的k是多少都会输出16,答案A

这篇关于2022年CSP-J认证 CCF信息学奥赛C++ 中小学初级组 第一轮真题-阅读程序题解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/762247

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工