本文主要是介绍EssentialC++ 以template进行编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
这一章通过讲解二叉树的template的实现过程,来讲解template的语法,以及一些需要注意的地方。首先了解一下二叉树的一些基本操作,二叉树支持插入,删除,遍历的操作。第一个安插至空白树的值,会成为此树的根节点。接下来的每个节点按特定的规则插入。如果小于根节点,就被置于左侧指数,大于根节点就被置于右子树。string类型按照字典排序。如下图
遍历又分前序遍历,中序遍历,后序遍历。
按照上图,前序遍历结果: Piglet,Ek,Chris,Kanga,Roo,Pooh,Trigger.
中序遍历结果:Chris Ek Kanga Piglet Pooh Roo Trigger
后序遍历结果:Chris Kanga Ek Pooh Trigger Roo Piglet
下面先实现一个节点类型BTnode。如果不实现泛型,
class string_node {
public:private:string _val; //节点的值int _cnt; //节点计数string_node *_lchild; //左节点string_node *_rchild; //右节点};
如果要实现存储int类型的节点则又要定义一个int_node类。这显然太麻烦。我们可以定义一个支持泛型的节点。
template<typename valType>
class BTnode {friend class BinaryTree<valType>; //把二叉树类型BinaryTree声明为友元类,这样BinaryTree就可以访问BTnode的私有成员 _val,_cnt,_lchild,_rchild等
public:BTnode(){}BTnode(const valType &val);void insert_value(const valType& elem);void remove_value( const valType &val, BTnode *& prev);static void lchild_leaf( BTnode *leaf, BTnode *subtree);
private:valType _val;int _cnt;BTnode *_lchild;BTnode *_rchild;
};
为了通过class template产生实体类,我们必须在class tempalte名称之后,紧接一个尖括号,其内放置一个实际类。例如:BTnode<int> 则将valType绑定至int, BTnode<string>则讲valType绑定至string。这样我们就实现了泛型。没有必要再为
每个类型都定义一个节点类型了。什么情况下我们需要 模板参数列表(template parameter list)去修饰 模板类(class template)呢。 一般的规则是,在class template 以及其members的定义式中,不需要之外。其他的场合都需要以parameter list 加以修饰。如:
template<typename elemType>
class BinaryTree {
public:
...
private:BTnode<elemType> *_root;
};
下面给出BTnode完整的定义:
template<typename Type>
class BinaryTree;template<typename valType>
class BTnode {friend class BinaryTree<valType>;
public:BTnode(){}BTnode(const valType &val);void insert_value(const valType& elem);void remove_value( const valType &val, BTnode *& prev);static void lchild_leaf( BTnode *leaf, BTnode *subtree);
private:valType _val;int _cnt;BTnode *_lchild;BTnode *_rchild;
};template<typename valType>
BTnode<valType>::BTnode(const valType &val): _val(val)
{_cnt = 1;_lchild = _rchild = 0;
}template<typename valType>
void BTnode<valType>::insert_value(const valType &val) {if ( this->_val == val) {this->_cnt++; return ;}if(this->_val > val ) {if(!this->_lchild)this->_lchild = new BTnode<valType>(val);elsethis->_lchild->insert_value(val);} else {if(!this->_rchild)this->_rchild = new BTnode<valType>(val);elsethis->_rchild->insert_value(val);}}template<typename valType>
void BTnode<valType>::remove_value( const valType &val, BTnode *& prev) { //找到相应的值,删除该节点。prev是起始的节点。 这里需要修改BTnode *指针本身,所以我们定义为 BTnode *& previf( val < _val ) {if ( !_lchild)return;else_lchild->remove_value(val, _lchild);}else if ( val > _val) {if( !_rchild)return;else_rchild->remove_value(val,_rchild);}else {if (_rchild) {prev = _rchild;if(_lchild)if( !prev->_lchild)prev->_lchild = _lchild;elseBTnode<valType>::lchild_leaf(_lchild,prev->_lchild);}elseprev = _lchild;delete this;}}template<typename valType>
inline void BTnode<valType>::lchild_leaf( BTnode *leaf, BTnode *subtree) {
//使leaf成为subtree的左子树的叶子节点while (subtree->_lchild)subtree = subtree->_lchild;subtree->_lchild = leaf;
}
template<typename valType>
BTnode<valType>::BTnode(const valType &val): _val(val)
{_cnt = 1;_lchild = _rchild = 0;
}
为什么这里第二次出现BTnode的时候不需要<valType>去修饰了呢,因为在class scope运算符出现之后 BTnode<valType>::,其后所有东西被视为位于class定义域内:还记得上面所说的规则吗在class template 以及其members的定义式中,不需要之外。其他的场合都需要以parameter list 加以修饰。
BTnode<valType>:: //在class定义域之外。
BTnode() //在class定义域之内。
关于函数参数的规则是,若是非基本类型,则使用传址的方式(by reference)传递 ,如果这个参数确认了,在函数内是只读的则加上const 修饰词。如:
insert_value(const valType &val)
下面给出BinaryTree的模板实现:
template<typename elemType>
class BinaryTree {
public:BinaryTree();BinaryTree(const BinaryTree&);~BinaryTree();BinaryTree& operator= (const BinaryTree&);void insert( const elemType &);bool empty() { return _root == 0;}void remove(const elemType &elem);void remove_root();void clear() { if(_root) { clear(_root); _root = 0;}}void preorder();void preorder(BTnode<elemType> *node, ostream &os = cout);static ostream & display_val( elemType &node,ostream &os = cout);void pre_recursion(BTnode<elemType> *node);BTnode<elemType>* get_root() { return _root;}
private:BTnode<elemType> *_root;void clear(BTnode<elemType> *node);void copy(BTnode<elemType> *tar, BTnode<elemType> *src);
};template<typename elemType>
inline BinaryTree<elemType>::
BinaryTree() : _root(0) {}template<typename elemType>
inline BinaryTree<elemType>::BinaryTree(const BinaryTree& rhs) {copy(_root,rhs._root);
}template<typename elemType>
void BinaryTree<elemType>::insert( const elemType &elem) {if (!_root)_root = new BTnode<elemType>(elem);_root->insert_value(elem);
}template<typename elemType>
inline BinaryTree<elemType>::~BinaryTree() {clear();
}template<typename elemType>
inline BinaryTree<elemType>&
BinaryTree<elemType>::operator= (const BinaryTree &rhs) {if( ! this = &rhs) {clear();copy(_root,rhs._root);}return *this;
}template<typename elemType>
inline void BinaryTree<elemType>::remove( const elemType &elem) {if(_root) {if( _root->_val == elem)remove_root();else_root->remove_value(elem, _root);}
}template<typename elemType>
void BinaryTree<elemType>::
remove_root() {if (!_root) return;BTnode<elemType> *tmp = _root;if( !_root->_rchild) {_root = _root->_rchild;if(tmp->_lchild) {if(!_root->_lchild)//没有任何子树则直接接上_root->_lchild = tmp->_lchild;elseBTnode<elemType>::lchild_leaf(tmp->_lchild,_root->_lchild);}}else_root = _root->_lchild;delete tmp;
}
//清除所有节点
template<typename elemType>
void BinaryTree<elemType>::clear(BTnode<elemType> *node) {if(node) {clear(node->_lchild);clear(node->_rchild);delete node;}
}template<typename elemType>
void BinaryTree<elemType>::preorder() {pre_recursion(_root);
}//递归的前序遍历
template<typename elemType>
void BinaryTree<elemType>::preorder(BTnode<elemType> *node, ostream &os) {if(node) {display_val(node->_val,os);preorder(node->_lchild,os);preorder(node->_rchild,os);}
}template<typename elemType>
ostream & BinaryTree<elemType>::display_val(elemType &node , ostream &os) {os << node << ' ';return os;
}//非递归实现前序遍历
template<typename elemType>
void BinaryTree<elemType>::pre_recursion (BTnode<elemType> *node) {stack<BTnode<elemType>*> s; //使用先进后出栈s.push(node);while(!s.empty()) {BTnode<elemType>* tmp = s.top();s.pop();BinaryTree<elemType>::display_val(tmp->_val,std::cout);if(tmp->_rchild)s.push(tmp->_rchild); //右节点先进栈 后出,后遍历if(tmp->_lchild)s.push(tmp->_lchild); //左节点后进栈,先出,先遍历}
}
测试:
int main()
{BinaryTree<string> bt;bt.insert("abc");bt.insert("agcb");bt.insert("kfgd");bt.insert("how are you");bt.preorder();//bt.remove("abc");//bt.preorder();bt.remove("kfgd");bt.preorder();return 0;
}
本章不仅让我了解泛型编程,模板类是怎么一回事,template的语法。而且还让我重温了一次二叉排序树 这个数据结构。
参考文献:
《Eseential C++》
这篇关于EssentialC++ 以template进行编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!