CRC16详解和Java实现

2024-02-28 21:12
文章标签 java 实现 详解 crc16

本文主要是介绍CRC16详解和Java实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 CRC介绍

2 CRC16 分类

3 计算步骤

4 代码实现


1 CRC介绍

CRC校验(循环冗余校验)

CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。

常见CRC参数模型如下:

CRC算法名称

多项式公式

宽度

多项式

初始值

结果异或值

输入反转

输出反转

CRC-4/ITU

x4 + x + 1

4

03

00

00

true

true

CRC-5/EPC

x5 + x3 + 1

5

09

09

00

false

false

CRC-5/ITU

x5 + x4 + x2 + 1

5

15

00

00

true

true

CRC-5/USB

x5 + x2 + 1

5

05

1F

1F

true

true

CRC-6/ITU

x6 + x + 1

6

03

00

00

true

true

CRC-7/MMC

x7 + x3 + 1

7

09

00

00

false

false

CRC-8

x8 + x2 + x + 1

8

07

00

00

false

false

CRC-8/ITU

x8 + x2 + x + 1

8

07

00

55

false

false

CRC-8/ROHC

x8 + x2 + x + 1

8

07

FF

00

true

true

CRC-8/MAXIM

x8 + x5 + x4 + 1

8

31

00

00

true

true

CRC-16/IBM

x16 + x15 + x2 + 1

16

8005

0000

0000

true

true

CRC-16/MAXIM

x16 + x15 + x2 + 1

16

8005

0000

FFFF

true

true

CRC-16/USB

x16 + x15 + x2 + 1

16

8005

FFFF

FFFF

true

true

CRC-16/MODBUS

x16 + x15 + x2 + 1

16

8005

FFFF

0000

true

true

CRC-16/CCITT

x16 + x12 + x5 + 1

16

1021

0000

0000

true

true

CRC-16/CCITT-FALSE

x16 + x12 + x5 + 1

16

1021

FFFF

0000

false

false

CRC-16/X25

x16 + x12 + x5 + 1

16

1021

FFFF

FFFF

true

true

CRC-16/XMODEM

x16 + x12 + x5 + 1

16

1021

0000

0000

false

false

CRC-16/DNP

x16 + x13 + x12 + x11 + x10 + x8 + x6 + x5 + x2 + 1

16

3D65

0000

FFFF

true

true

CRC-32

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

32

04C11DB7

FFFFFFFF

FFFFFFFF

true

true

CRC-32/MPEG-2

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

32

04C11DB7

FFFFFFFF

00000000

false

false

CRC算法参数模型解释:

可参考在线工具加深理解。

  • WIDTH:宽度,即CRC比特数,可分为CRC-4/5/67/8/16/32等。
  • POLY:多项式,以16进制表示。例如:x16 + x15 + x2 + 1即是0x8005,忽略了最高位的"1"。
  • INIT:这是算法开始时寄存器(crc)的初始化预置值,十六进制表示。
  • XOROUT:计算结果与此参数异或后得到最终的CRC值。
  • REFIN:待测数据的每个字节是否按位反转,True或False。
  • REFOUT:在计算后之后,异或输出之前,整个数据是否按位反转,True或False。

一般确定一个算法会指出:CRC16  x16 + x15 + x2 + 1,其他有默认值。

2 CRC16 分类

CRC16_CCITT:多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在前,高位在后,结果与0x0000异或。
CRC16_CCITT_FALSE:多项式x16+x12+x5+1(0x1021),初始值0xFFFF,低位在后,高位在前,结果与0x0000异或。
CRC16_XMODEM:多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在后,高位在前,结果与0x0000异或。
CRC16_X25:多项式x16+x12+x5+1(0x1021),初始值0xffff,低位在前,高位在后,结果与0xFFFF异或。
CRC16_MODBUS:多项式x16+x15+x2+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0x0000异或。
CRC16_IBM:多项式x16+x15+x2+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0x0000异或。
CRC16_MAXIM:多项式x16+x15+x2+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0xFFFF异或。
CRC16_USB:多项式x16+x15+x2+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0xFFFF异或。
CRC16_DNP:多项式x16+x13+x12+x11+x10+x8+x6+x5+x2+1(0x3D65),初始值0x0000,低位在前,高位在后,结果与0xFF异或。

3 计算步骤

(1)、预置1个16位的寄存器为十六进制FFFF(即全为1),称此寄存器为CRC寄存器;
(2)、把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低8位相异或,把结果放于CRC寄存器,高八位数据不变;
(3)、把CRC寄存器的内容右移一位(朝低位)用0填补最高位,并检查右移后的移出位;
(4)、如果移出位为0:重复第3步(再次右移一位);如果移出位为1,CRC寄存器与多项式A001(1010 0000 0000 0001)进行异或;
(5)、重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;
(6)、重复步骤2到步骤5,进行通讯信息帧下一个字节的处理;
(7)、将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低字节进行交换;
(8)、最后得到的CRC寄存器内容即为:CRC码。

4 代码实现

public class CRC16Demo {/*** CRC16_CCITT:多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在前,高位在后,结果与0x0000异或* 0x8408是0x1021按位颠倒后的结果。** @param buffer* @return*/public static int CRC16_CCITT(byte[] buffer) {int wCRCin = 0x0000;int wCPoly = 0x8408;for (byte b : buffer) {wCRCin ^= ((int) b & 0x00ff);for (int j = 0; j < 8; j++) {if ((wCRCin & 0x0001) != 0) {wCRCin >>= 1;wCRCin ^= wCPoly;} else {wCRCin >>= 1;}}}
//        wCRCin=(wCRCin<<8)|(wCRCin>>8);
//        wCRCin &= 0xffff;return wCRCin ^= 0x0000;}/*** CRC-CCITT (0xFFFF)* CRC16_CCITT_FALSE:多项式x16+x12+x5+1(0x1021),初始值0xFFFF,低位在后,高位在前,结果与0x0000异或** @param buffer* @return*/public static int CRC16_CCITT_FALSE(byte[] buffer) {int wCRCin = 0xffff;int wCPoly = 0x1021;for (byte b : buffer) {for (int i = 0; i < 8; i++) {boolean bit = ((b >> (7 - i) & 1) == 1);boolean c15 = ((wCRCin >> 15 & 1) == 1);wCRCin <<= 1;if (c15 ^ bit)wCRCin ^= wCPoly;}}wCRCin &= 0xffff;return wCRCin ^= 0x0000;}/*** CRC-CCITT (XModem)* CRC16_XMODEM:多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在后,高位在前,结果与0x0000异或** @param buffer* @return*/public static int CRC16_XMODEM(byte[] buffer) {int wCRCin = 0x0000; // initial value 65535int wCPoly = 0x1021; // 0001 0000 0010 0001 (0, 5, 12)for (byte b : buffer) {for (int i = 0; i < 8; i++) {boolean bit = ((b >> (7 - i) & 1) == 1);boolean c15 = ((wCRCin >> 15 & 1) == 1);wCRCin <<= 1;if (c15 ^ bit)wCRCin ^= wCPoly;}}wCRCin &= 0xffff;return wCRCin ^= 0x0000;}/*** CRC16_X25:多项式x16+x12+x5+1(0x1021),初始值0xffff,低位在前,高位在后,结果与0xFFFF异或* 0x8408是0x1021按位颠倒后的结果。** @param buffer* @return*/public static int CRC16_X25(byte[] buffer) {int wCRCin = 0xffff;int wCPoly = 0x8408;for (byte b : buffer) {wCRCin ^= ((int) b & 0x00ff);for (int j = 0; j < 8; j++) {if ((wCRCin & 0x0001) != 0) {wCRCin >>= 1;wCRCin ^= wCPoly;} else {wCRCin >>= 1;}}}return wCRCin ^= 0xffff;}/*** CRC-16 (Modbus)* CRC16_MODBUS:多项式x16+x15+x2+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0x0000异或* 0xA001是0x8005按位颠倒后的结果** @param buffer* @return*/public static int CRC16_MODBUS(byte[] buffer) {int wCRCin = 0xffff;int POLYNOMIAL = 0xa001;for (byte b : buffer) {wCRCin ^= ((int) b & 0x00ff);for (int j = 0; j < 8; j++) {if ((wCRCin & 0x0001) != 0) {wCRCin >>= 1;wCRCin ^= POLYNOMIAL;} else {wCRCin >>= 1;}}}return wCRCin ^= 0x0000;}/*** CRC-16* CRC16_IBM:多项式x16+x15+x2+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0x0000异或* 0xA001是0x8005按位颠倒后的结果** @param buffer* @return*/public static int CRC16_IBM(byte[] buffer) {int wCRCin = 0x0000;int wCPoly = 0xa001;for (byte b : buffer) {wCRCin ^= ((int) b & 0x00ff);for (int j = 0; j < 8; j++) {if ((wCRCin & 0x0001) != 0) {wCRCin >>= 1;wCRCin ^= wCPoly;} else {wCRCin >>= 1;}}}return wCRCin ^= 0x0000;}/*** CRC16_MAXIM:多项式x16+x15+x2+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0xFFFF异或* 0xA001是0x8005按位颠倒后的结果** @param buffer* @return*/public static int CRC16_MAXIM(byte[] buffer) {int wCRCin = 0x0000;int wCPoly = 0xa001;for (byte b : buffer) {wCRCin ^= ((int) b & 0x00ff);for (int j = 0; j < 8; j++) {if ((wCRCin & 0x0001) != 0) {wCRCin >>= 1;wCRCin ^= wCPoly;} else {wCRCin >>= 1;}}}return wCRCin ^= 0xffff;}/*** CRC16_USB:多项式x16+x15+x2+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0xFFFF异或* 0xA001是0x8005按位颠倒后的结果** @param buffer* @return*/public static int CRC16_USB(byte[] buffer) {int wCRCin = 0xFFFF;int wCPoly = 0xa001;for (byte b : buffer) {wCRCin ^= ((int) b & 0x00ff);for (int j = 0; j < 8; j++) {if ((wCRCin & 0x0001) != 0) {wCRCin >>= 1;wCRCin ^= wCPoly;} else {wCRCin >>= 1;}}}return wCRCin ^= 0xffff;}/*** CRC16_DNP:多项式x16+x13+x12+x11+x10+x8+x6+x5+x2+1(0x3D65),初始值0x0000,低位在前,高位在后,结果与0xFFFF异或* 0xA6BC是0x3D65按位颠倒后的结果** @param buffer* @return*/public static int CRC16_DNP(byte[] buffer) {int wCRCin = 0x0000;int wCPoly = 0xA6BC;for (byte b : buffer) {wCRCin ^= ((int) b & 0x00ff);for (int j = 0; j < 8; j++) {if ((wCRCin & 0x0001) != 0) {wCRCin >>= 1;wCRCin ^= wCPoly;} else {wCRCin >>= 1;}}}return wCRCin ^= 0xffff;}public static void main(String[] args) {String dataStr = "0809060010040303";byte[] data = hexStringToByteArray(dataStr.replaceAll(" ", ""));int res = CRC16_IBM(data);System.out.println(Integer.toHexString(res));}public static byte[] hexStringToByteArray(String s) {int len = s.length();byte[] data = new byte[len / 2];for (int i = 0; i < len; i += 2) {data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)+ Character.digit(s.charAt(i + 1), 16));}return data;}

这篇关于CRC16详解和Java实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756630

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很