Flink1.4 Fault Tolerance源码解析-1

2024-02-26 12:32

本文主要是介绍Flink1.4 Fault Tolerance源码解析-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:本篇关注Flink,对Fault Tolerance的源码实现进行阐述,主要介绍Api层及Flink现有实现。

本篇文章重点关注以下问题:

  • 具备Fault Tolerance能力的两种对象:Function和Operator
  • 分析两个接口,列举典型实现,并做简要分析

1. 具备Fault Tolerance能力的两种对象

  • Function
  • Operator

1.1 Function对象

org.apache.flink.api.common.functions.Function

作为所有用户自定义函数的基本接口,如已经预定义的FlatMapFunction就是基础自Function,Function并未定义任何方法,只是作为标识接口。
所有Function对象的Fault Tolerance都是通过继承CheckpointedFunction接口实现的,换话说,容错能力是Function的可选项,这点与Operator不同。

1.2 Operator对象

org.apache.flink.streaming.api.operators.StreamOperator

所有Operator的基本接口,如已经预定义的StreamFilter、StreamFlatMap就是StreamOperator的实现。
与Function是标识接口不同,StreamOperator内置了几个和检查点相关的接口方法,因此,在Operator中,容错能力是实现Operator的必选项,这点不难理解,因为Operator处于运行时时,诸如分区信息都是必要要做快照的。


2. CheckpointedFunction

org.apache.flink.streaming.api.checkpoint. CheckpointedFunction

CheckpointedFunction类结构图
CheckpointedFunction接口是有状态转换函数的核心接口,两个接口方法:

  • initializeState:Function初始化的时候调用,一般用作初始化state数据结构。
  • snapshotState:请求state快照时被调用。

snapshotState方法中方法签名中的参数FunctionSnapshotContext可以获取此Function中的所有State信息(快照),通过该上下文,可以获取该Function之前变更所产生的最终结果。

2.1 FlinkKafkaProducerBase

org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase

FlinkKafkaProducerBase
方法签名:

public abstract class FlinkKafkaConsumerBase<T> extends RichParallelSourceFunction<T> implements CheckpointListener, ResultTypeQueryable<T>, CheckpointedFunction {}

FlinkKafkaConsumerBase是Flink实现基于Kafka的Source的基类,Kafka提供基于offset并且可重复消费的机制,使其非常容易实现Fault Tolerance机制。

关键代码:

/** Consumer从各topic partitions读取的初始offsets. */
private Map<KafkaTopicPartition, Long> subscribedPartitionsToStartOffsets;/** 保存已消费的、但是Offset未提交至Broken或Zk的数据. */
private final LinkedMap pendingOffsetsToCommit = new LinkedMap();/*** 如果程序从Checkpoint启动,此变量保存此Consumer上次消费的offset</br>* * <p>此变量主要由 {@link #initializeState(FunctionInitializationContext)} 进行赋值.**/
private transient volatile TreeMap<KafkaTopicPartition, Long> restoredState;/** 在state backend上保存的State信息(Offset信息) . */
private transient ListState<Tuple2<KafkaTopicPartition, Long>> unionOffsetStates;@Override
public final void initializeState(FunctionInitializationContext context) throws Exception {OperatorStateStore stateStore = context.getOperatorStateStore();// 兼容1.2.0版本的State,可无视ListState<Tuple2<KafkaTopicPartition, Long>> oldRoundRobinListState =stateStore.getSerializableListState(DefaultOperatorStateBackend.DEFAULT_OPERATOR_STATE_NAME);// 各Partition的offset信息this.unionOffsetStates = stateStore.getUnionListState(new ListStateDescriptor<>(OFFSETS_STATE_NAME,TypeInformation.of(new TypeHint<Tuple2<KafkaTopicPartition, Long>>() {})));if (context.isRestored() && !restoredFromOldState) {restoredState = new TreeMap<>(new KafkaTopicPartition.Comparator());// 兼容1.2.0版本的State,可无视for (Tuple2<KafkaTopicPartition, Long> kafkaOffset : oldRoundRobinListState.get()) {restoredFromOldState = true;unionOffsetStates.add(kafkaOffset);}oldRoundRobinListState.clear();if (restoredFromOldState && discoveryIntervalMillis != PARTITION_DISCOVERY_DISABLED) {throw new IllegalArgumentException("Topic / partition discovery cannot be enabled if the job is restored from a savepoint from Flink 1.2.x.");}// 将待恢复的State信息保存进‘restoredState’变量中,以便程序异常时用于恢复for (Tuple2<KafkaTopicPartition, Long> kafkaOffset : unionOffsetStates.get()) {restoredState.put(kafkaOffset.f0, kafkaOffset.f1);}LOG.info("Setting restore state in the FlinkKafkaConsumer: {}", restoredState);} else {LOG.info("No restore state for FlinkKafkaConsumer.");}
}@Override
public final void snapshotState(FunctionSnapshotContext context) throws Exception {if (!running) {LOG.debug("snapshotState() called on closed source");} else {// 首先清空state backend对应offset的全局存储(State信息)unionOffsetStates.clear();// KafkaServer的连接器,根据Kafka版本由子类实现final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;if (fetcher == null) {// 连接器还未初始化,unionOffsetStates的值从 restored offsets 或是 subscribedPartition上读取for (Map.Entry<KafkaTopicPartition, Long> subscribedPartition : subscribedPartitionsToStartOffsets.entrySet()) {unionOffsetStates.add(Tuple2.of(subscribedPartition.getKey(), subscribedPartition.getValue()));}if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {// 如果启用快照时同步提交Offset,则在初始化时,用restoredState给pendingOffsetsToCommit赋值pendingOffsetsToCommit.put(context.getCheckpointId(), restoredState);}} else {// 通过连接器获取当前消费的OffsetsHashMap<KafkaTopicPartition, Long> currentOffsets = fetcher.snapshotCurrentState();if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {// 保存当前消费的OffsetpendingOffsetsToCommit.put(context.getCheckpointId(), currentOffsets);}// 给state backend对应offset的全局存储(State信息)赋值for (Map.Entry<KafkaTopicPartition, Long> kafkaTopicPartitionLongEntry : currentOffsets.entrySet()) {unionOffsetStates.add(Tuple2.of(kafkaTopicPartitionLongEntry.getKey(), kafkaTopicPartitionLongEntry.getValue()));}}if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {// pendingOffsetsToCommit的保护机制,最多存储100个元素,正也是此Map需要有序的原因while (pendingOffsetsToCommit.size() > MAX_NUM_PENDING_CHECKPOINTS) {pendingOffsetsToCommit.remove(0);}}}
}

快照总结:

  • initializeState方法从state backend中恢复State,并将相关信息保存入restoredState
  • snapshotState方法将当前准备放入state backend的state信息保存至unionOffsetStates,如果应用需要在快照的同时提交Offset,则将消费的Offset信息保存至pendingOffsetsToCommit。

FlinkKafkaConsumerBase继承了CheckpointListener接口,此接口是一个监听接口,以便当快照完成时通知Function进行一些必要处理;FlinkKafkaConsumerBase借用此接口来提交Offset,代码如下:

@Override
public final void notifyCheckpointComplete(long checkpointId) throws Exception {if (!running) {LOG.debug("notifyCheckpointComplete() called on closed source");return;}final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;if (fetcher == null) {LOG.debug("notifyCheckpointComplete() called on uninitialized source");return;}if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {try {// 在pendingOffsetsToCommit中找出checkpointId对应的offset信息final int posInMap = pendingOffsetsToCommit.indexOf(checkpointId);if (posInMap == -1) {LOG.warn("Received confirmation for unknown checkpoint id {}", checkpointId);return;}@SuppressWarnings("unchecked")// 取出checkpointId对应的Offset信息Map<KafkaTopicPartition, Long> offsets =(Map<KafkaTopicPartition, Long>) pendingOffsetsToCommit.remove(posInMap);// 将该checkpointId之前的Offset信息移除(pendingOffsetsToCommit有序的原因)for (int i = 0; i < posInMap; i++) {pendingOffsetsToCommit.remove(0);}if (offsets == null || offsets.size() == 0) {LOG.debug("Checkpoint state was empty.");return;}// 通过连接器向Broken或Zk提交Offset信息fetcher.commitInternalOffsetsToKafka(offsets, offsetCommitCallback);} catch (Exception e) {if (running) {throw e;}}}
}

2.2 其他实现

因项目目前只涉及Kafka,故只研究了KafkaConsumerFunction的容错处理实现,其他诸如StatefulSequenceSource、MessageAcknowledgingSourceBase实现类似。


3. StreamOperator

org.apache.flink.streaming.api.operators.StreamOperator

StreamOperator
StreamOperator内置了我们上面谈到的几个跟检查点相关的接口方法:

  • initializeState
  • snapshotState
  • notifyOfCompletedCheckpoint

正因为快照相关方法都已内置在StreamOperator这个顶层接口中,所以operator中快照机制由可选项变成了必选项。

这里需要注意的是snapshotState方法,它返回值为OperatorSnapshotResult。它是一个可以存储四种State类型的容器:

  • keyedStateManagedFuture
  • keyedStateRawFuture
  • operatorStateManagedFuture
  • operatorStateRawFuture

有关四种State类型不是本节重点,可参考:https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/state.html
下面以Flink内置的一个Operator(StreamFlatMap)为切入点,介绍一些常用类。

3.1 AbstractStreamOperator

org.apache.flink.streaming.api.operators.AbstractStreamOperator

AbstractStreamOperator是StreamOperator的抽象类,为operator的实现提供模板,当然也为以上的三个跟快照相关的接口方法的实现提供了模板。

3.2 AbstractUdfStreamOperator

org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator

该抽象类继承自AbstractStreamOperator,用于进一步为operator的实现提供模板,不过从类名可以看出来,它主要是为用户定义函数(udf)的operator提供模板。

值得注意的是,方法snapshotState中,有如下代码:

if (userFunction instanceof CheckpointedFunction) {  ((CheckpointedFunction) userFunction).snapshotState(context);  return true;  
} 

Operator中出现了CheckpointedFunction,这是因为function只是静态的函数,它的运行还必须借助于operator,因此其状态也必须借助于operator来帮助其与Flink的运行时交互以达到最终的持久化的目的。
3.3 StreamFlatMap
StreamFlatMap代码较为简单,专注于使用FlatMap对应的Function实现业务逻辑。

if (userFunction instanceof CheckpointedFunction) {  ((CheckpointedFunction) userFunction).snapshotState(context);  return true;  
} 

4. Function和StreamOperator之间的关联

观察AbstractUdfStreamOperator的构造函数:

public AbstractUdfStreamOperator(F userFunction) {  this.userFunction = requireNonNull(userFunction);  checkUdfCheckpointingPreconditions();  
}  

可以发现,所有UDF的Operator都内嵌了对应的Function,这是因为Function仅仅是一个静态的函数,其真正需要发挥作用依赖于Operator,以便在Flink运行时进行交互达到持久化目的。


小结

本篇剖析了Flink针对Function以及Operator如何做快照以及如何恢复的实现。虽然,还没有涉及到fault tolerance的最终实现机制,但是这是我们的入口。

这篇关于Flink1.4 Fault Tolerance源码解析-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748885

相关文章

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.