Flink1.4 Fault Tolerance源码解析-1

2024-02-26 12:32

本文主要是介绍Flink1.4 Fault Tolerance源码解析-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:本篇关注Flink,对Fault Tolerance的源码实现进行阐述,主要介绍Api层及Flink现有实现。

本篇文章重点关注以下问题:

  • 具备Fault Tolerance能力的两种对象:Function和Operator
  • 分析两个接口,列举典型实现,并做简要分析

1. 具备Fault Tolerance能力的两种对象

  • Function
  • Operator

1.1 Function对象

org.apache.flink.api.common.functions.Function

作为所有用户自定义函数的基本接口,如已经预定义的FlatMapFunction就是基础自Function,Function并未定义任何方法,只是作为标识接口。
所有Function对象的Fault Tolerance都是通过继承CheckpointedFunction接口实现的,换话说,容错能力是Function的可选项,这点与Operator不同。

1.2 Operator对象

org.apache.flink.streaming.api.operators.StreamOperator

所有Operator的基本接口,如已经预定义的StreamFilter、StreamFlatMap就是StreamOperator的实现。
与Function是标识接口不同,StreamOperator内置了几个和检查点相关的接口方法,因此,在Operator中,容错能力是实现Operator的必选项,这点不难理解,因为Operator处于运行时时,诸如分区信息都是必要要做快照的。


2. CheckpointedFunction

org.apache.flink.streaming.api.checkpoint. CheckpointedFunction

CheckpointedFunction类结构图
CheckpointedFunction接口是有状态转换函数的核心接口,两个接口方法:

  • initializeState:Function初始化的时候调用,一般用作初始化state数据结构。
  • snapshotState:请求state快照时被调用。

snapshotState方法中方法签名中的参数FunctionSnapshotContext可以获取此Function中的所有State信息(快照),通过该上下文,可以获取该Function之前变更所产生的最终结果。

2.1 FlinkKafkaProducerBase

org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase

FlinkKafkaProducerBase
方法签名:

public abstract class FlinkKafkaConsumerBase<T> extends RichParallelSourceFunction<T> implements CheckpointListener, ResultTypeQueryable<T>, CheckpointedFunction {}

FlinkKafkaConsumerBase是Flink实现基于Kafka的Source的基类,Kafka提供基于offset并且可重复消费的机制,使其非常容易实现Fault Tolerance机制。

关键代码:

/** Consumer从各topic partitions读取的初始offsets. */
private Map<KafkaTopicPartition, Long> subscribedPartitionsToStartOffsets;/** 保存已消费的、但是Offset未提交至Broken或Zk的数据. */
private final LinkedMap pendingOffsetsToCommit = new LinkedMap();/*** 如果程序从Checkpoint启动,此变量保存此Consumer上次消费的offset</br>* * <p>此变量主要由 {@link #initializeState(FunctionInitializationContext)} 进行赋值.**/
private transient volatile TreeMap<KafkaTopicPartition, Long> restoredState;/** 在state backend上保存的State信息(Offset信息) . */
private transient ListState<Tuple2<KafkaTopicPartition, Long>> unionOffsetStates;@Override
public final void initializeState(FunctionInitializationContext context) throws Exception {OperatorStateStore stateStore = context.getOperatorStateStore();// 兼容1.2.0版本的State,可无视ListState<Tuple2<KafkaTopicPartition, Long>> oldRoundRobinListState =stateStore.getSerializableListState(DefaultOperatorStateBackend.DEFAULT_OPERATOR_STATE_NAME);// 各Partition的offset信息this.unionOffsetStates = stateStore.getUnionListState(new ListStateDescriptor<>(OFFSETS_STATE_NAME,TypeInformation.of(new TypeHint<Tuple2<KafkaTopicPartition, Long>>() {})));if (context.isRestored() && !restoredFromOldState) {restoredState = new TreeMap<>(new KafkaTopicPartition.Comparator());// 兼容1.2.0版本的State,可无视for (Tuple2<KafkaTopicPartition, Long> kafkaOffset : oldRoundRobinListState.get()) {restoredFromOldState = true;unionOffsetStates.add(kafkaOffset);}oldRoundRobinListState.clear();if (restoredFromOldState && discoveryIntervalMillis != PARTITION_DISCOVERY_DISABLED) {throw new IllegalArgumentException("Topic / partition discovery cannot be enabled if the job is restored from a savepoint from Flink 1.2.x.");}// 将待恢复的State信息保存进‘restoredState’变量中,以便程序异常时用于恢复for (Tuple2<KafkaTopicPartition, Long> kafkaOffset : unionOffsetStates.get()) {restoredState.put(kafkaOffset.f0, kafkaOffset.f1);}LOG.info("Setting restore state in the FlinkKafkaConsumer: {}", restoredState);} else {LOG.info("No restore state for FlinkKafkaConsumer.");}
}@Override
public final void snapshotState(FunctionSnapshotContext context) throws Exception {if (!running) {LOG.debug("snapshotState() called on closed source");} else {// 首先清空state backend对应offset的全局存储(State信息)unionOffsetStates.clear();// KafkaServer的连接器,根据Kafka版本由子类实现final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;if (fetcher == null) {// 连接器还未初始化,unionOffsetStates的值从 restored offsets 或是 subscribedPartition上读取for (Map.Entry<KafkaTopicPartition, Long> subscribedPartition : subscribedPartitionsToStartOffsets.entrySet()) {unionOffsetStates.add(Tuple2.of(subscribedPartition.getKey(), subscribedPartition.getValue()));}if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {// 如果启用快照时同步提交Offset,则在初始化时,用restoredState给pendingOffsetsToCommit赋值pendingOffsetsToCommit.put(context.getCheckpointId(), restoredState);}} else {// 通过连接器获取当前消费的OffsetsHashMap<KafkaTopicPartition, Long> currentOffsets = fetcher.snapshotCurrentState();if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {// 保存当前消费的OffsetpendingOffsetsToCommit.put(context.getCheckpointId(), currentOffsets);}// 给state backend对应offset的全局存储(State信息)赋值for (Map.Entry<KafkaTopicPartition, Long> kafkaTopicPartitionLongEntry : currentOffsets.entrySet()) {unionOffsetStates.add(Tuple2.of(kafkaTopicPartitionLongEntry.getKey(), kafkaTopicPartitionLongEntry.getValue()));}}if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {// pendingOffsetsToCommit的保护机制,最多存储100个元素,正也是此Map需要有序的原因while (pendingOffsetsToCommit.size() > MAX_NUM_PENDING_CHECKPOINTS) {pendingOffsetsToCommit.remove(0);}}}
}

快照总结:

  • initializeState方法从state backend中恢复State,并将相关信息保存入restoredState
  • snapshotState方法将当前准备放入state backend的state信息保存至unionOffsetStates,如果应用需要在快照的同时提交Offset,则将消费的Offset信息保存至pendingOffsetsToCommit。

FlinkKafkaConsumerBase继承了CheckpointListener接口,此接口是一个监听接口,以便当快照完成时通知Function进行一些必要处理;FlinkKafkaConsumerBase借用此接口来提交Offset,代码如下:

@Override
public final void notifyCheckpointComplete(long checkpointId) throws Exception {if (!running) {LOG.debug("notifyCheckpointComplete() called on closed source");return;}final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;if (fetcher == null) {LOG.debug("notifyCheckpointComplete() called on uninitialized source");return;}if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {try {// 在pendingOffsetsToCommit中找出checkpointId对应的offset信息final int posInMap = pendingOffsetsToCommit.indexOf(checkpointId);if (posInMap == -1) {LOG.warn("Received confirmation for unknown checkpoint id {}", checkpointId);return;}@SuppressWarnings("unchecked")// 取出checkpointId对应的Offset信息Map<KafkaTopicPartition, Long> offsets =(Map<KafkaTopicPartition, Long>) pendingOffsetsToCommit.remove(posInMap);// 将该checkpointId之前的Offset信息移除(pendingOffsetsToCommit有序的原因)for (int i = 0; i < posInMap; i++) {pendingOffsetsToCommit.remove(0);}if (offsets == null || offsets.size() == 0) {LOG.debug("Checkpoint state was empty.");return;}// 通过连接器向Broken或Zk提交Offset信息fetcher.commitInternalOffsetsToKafka(offsets, offsetCommitCallback);} catch (Exception e) {if (running) {throw e;}}}
}

2.2 其他实现

因项目目前只涉及Kafka,故只研究了KafkaConsumerFunction的容错处理实现,其他诸如StatefulSequenceSource、MessageAcknowledgingSourceBase实现类似。


3. StreamOperator

org.apache.flink.streaming.api.operators.StreamOperator

StreamOperator
StreamOperator内置了我们上面谈到的几个跟检查点相关的接口方法:

  • initializeState
  • snapshotState
  • notifyOfCompletedCheckpoint

正因为快照相关方法都已内置在StreamOperator这个顶层接口中,所以operator中快照机制由可选项变成了必选项。

这里需要注意的是snapshotState方法,它返回值为OperatorSnapshotResult。它是一个可以存储四种State类型的容器:

  • keyedStateManagedFuture
  • keyedStateRawFuture
  • operatorStateManagedFuture
  • operatorStateRawFuture

有关四种State类型不是本节重点,可参考:https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/state.html
下面以Flink内置的一个Operator(StreamFlatMap)为切入点,介绍一些常用类。

3.1 AbstractStreamOperator

org.apache.flink.streaming.api.operators.AbstractStreamOperator

AbstractStreamOperator是StreamOperator的抽象类,为operator的实现提供模板,当然也为以上的三个跟快照相关的接口方法的实现提供了模板。

3.2 AbstractUdfStreamOperator

org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator

该抽象类继承自AbstractStreamOperator,用于进一步为operator的实现提供模板,不过从类名可以看出来,它主要是为用户定义函数(udf)的operator提供模板。

值得注意的是,方法snapshotState中,有如下代码:

if (userFunction instanceof CheckpointedFunction) {  ((CheckpointedFunction) userFunction).snapshotState(context);  return true;  
} 

Operator中出现了CheckpointedFunction,这是因为function只是静态的函数,它的运行还必须借助于operator,因此其状态也必须借助于operator来帮助其与Flink的运行时交互以达到最终的持久化的目的。
3.3 StreamFlatMap
StreamFlatMap代码较为简单,专注于使用FlatMap对应的Function实现业务逻辑。

if (userFunction instanceof CheckpointedFunction) {  ((CheckpointedFunction) userFunction).snapshotState(context);  return true;  
} 

4. Function和StreamOperator之间的关联

观察AbstractUdfStreamOperator的构造函数:

public AbstractUdfStreamOperator(F userFunction) {  this.userFunction = requireNonNull(userFunction);  checkUdfCheckpointingPreconditions();  
}  

可以发现,所有UDF的Operator都内嵌了对应的Function,这是因为Function仅仅是一个静态的函数,其真正需要发挥作用依赖于Operator,以便在Flink运行时进行交互达到持久化目的。


小结

本篇剖析了Flink针对Function以及Operator如何做快照以及如何恢复的实现。虽然,还没有涉及到fault tolerance的最终实现机制,但是这是我们的入口。

这篇关于Flink1.4 Fault Tolerance源码解析-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748885

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript