ORACLE的analyze使用简介

2024-02-26 08:48
文章标签 oracle 使用 简介 analyze

本文主要是介绍ORACLE的analyze使用简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    ORACLE数据库的PL/SQL语句执行的优化器,有基于代价的优化器(CBO)和基于规则的优化器(RBO)。

    RBO的优化方式,依赖于一套严格的语法规则,只要按照规则写出的语句,不管数据表和索引的内容是否发生变化,不会影响PL/SQL语句的"执行计划"。

    CBO自ORACLE7版被引入,ORACLE自7版以来采用的许多新技术都是只基于CBO的,如星型连接排列查询,哈希连接查询,反向索引,索引表,分区表和并行查询等。CBO计算各种可能"执行计划"的"代价",即cost,从中选用cost最低的方案,作为实际运行方案。各"执行计划"的cost的计算根据,依赖于数据表中数据的统计分布,ORACLE数据库本身对该统计分布是不清楚的,须要分析表和相关的索引,才能搜集到CBO所需的数据。

    CBO是ORACLE推荐使用的优化方式,要想使用好CBO,使SQL语句发挥最大效能,必须保证统计数据的及时性。

    统计信息的生成可以有完全计算法和抽样估算法。SQL例句如下:

    完全计算法: analyze table abc compute statistics;
    抽样估算法(抽样20%): analyze table abc estimate statistics sample 20 percent;

    对表作完全计算所花的时间相当于做全表扫描,抽样估算法由于采用抽样,比完全计算法的生成统计速度要快,如果不是要求要有精确数据的话,尽量采用抽样分析法。建议对表分析采用抽样估算,对索引分析可以采用完全计算。

    我们可以采用以下两种方法,对数据库的表和索引及簇表定期分析生成统计信息,保证应用的正常性能。

    1. 在系统设置定时任务,执行分析脚本。

    在数据库服务器端,我们以UNIX用户oracle,运行脚本analyze,在analyze中,我们生成待执行sql脚本,并运行。(假设我们要分析scott用户下的所有表和索引)

    Analyze脚本内容如下:

sqlplus scott/tiger << EOF
    set pagesize 5000
    set heading off
    SPOOL ANALYTAB.SQL
    SELECT "ANALYZE TABLE SCOTT."||TABLE_NAME||" ESTIMATE STATISTICS SAMPLE 20 PERCENT ;" FROM USER_TABLES;
    SPOOL OFF
    SPOOL ANALYIND.SQL
    SELECT "ANALYZE TABLE SCOTT."||TABLE_NAME||" ESTIMATE STATISTICS SAMPLE 20 PERCENT FOR ALL INDEXES;" FROM USER_TABLES;
    SPOOL OFF
    SPOOL ANALYZE.LOG
    @ANALYTAB.SQL
    @ANALYIND.SQL
    SPOOL OFF
    EXIT

    在UNIX平台上crontab加入,以上文件,设置为每个月或合适的时间段运行。

或者将如下脚本保存成analyze.sql,然后在sqlplus里面执行:

set pagesize 5000
set linesize 300
set trims on
set heading off
set feedback off
SPOOL analyTab.sql
SELECT 'ANALYZE TABLE ZFMI.'||TABLE_NAME||' COMPUTE STATISTICS ;'

FROM USER_TABLES;
SPOOL OFF
SPOOL analyIdx.sql
SELECT 'ANALYZE TABLE ZFMI.'||TABLE_NAME||' COMPUTE STATISTICS

FOR ALL INDEXES;' FROM USER_TABLES;
SPOOL OFF
SPOOL analyLog.log
@@analyTab.sql
@@analyIdx.sql
SPOOL OFF

 

 

    2. 利用ORACLE提供的程序包(PACKAGE)对相关的数据库对象进行分析。

    有以下的程序包可以对表,索引,簇表进行分析。

    包中的存储过程的相关参数解释如下:

    TYPE可以是:TABLE,INDEX,CLUSTER中其一。
    SCHEMA为:TABLE,INDEX,CLUSTER的所有者,NULL为当前用户。
    NAME为:相关对象的名称。
    METHOD是:ESTIMATE,COMPUTE,DELETE中其一,当选用ESTIMATE,
    下面两项,ESTIMATE_ROWS和ESTIMATE_PERCENT不能同时为空值。
    ESTIMATE_ROWS是:估算的抽样行数。
    ESTIMATE_PERCENT是:估算的抽样百分比。
    METHOD_OPT是:有以下选项,
    FOR TABLE
    [FOR ALL [INDEXED] COLUMNS] [SIZE N]
    FOR ALL INDEXES
    PARTNAME是:指定要分析的分区名称。

    1)

    DBMS_DDL.ANALYZE_OBJECT(
    TYPE VARCHAR2,
    SCHEMA VARCHAR2,
    NAME VARCHAR2,
    METHOD VARCHAR2,
    ESTIMATE_ROWS NUMBER DEFAULT NULL,
    ESTIMATE_PERCENT NUMBER DEFAULT NULL,
    METHOD_OPT VARCHAR2 DEFAULT NULL,
    PARTNAME VARCHAR2 DEFAULT NULL ) ;

    该存储过程可对特定的表,索引和簇表进行分析。例如,对SCOTT用户的EMP表,进行50%的抽样分析,参数如下:

    DBMS_DDL.ANALYZE_OBJECT("TABLE", "SCOTT", "EMP", "ESTIMATE", NULL,50);

    2)

    DBMS_UTILITY.ANALYZE_SCHEMA (
    SCHEMA VARCHAR2,
    METHOD VARCHAR2,
    ESTIMATE_ROWS NUMBER DEFAULT NULL,
    ESTIMATE_PERCENT NUMBER DEFAULT NULL,
    METHOD_OPT VARCHAR2 DEFAULT NULL ) ;
    DBMS_UTILITY.ANALYZE_DATABASE (
    METHOD VARCHAR2,
    ESTIMATE_ROWS NUMBER DEFAULT NULL,
    ESTIMATE_PERCENT NUMBER DEFAULT NULL,
    METHOD_OPT VARCHAR2 DEFAULT NULL );

    其中,ANALYZE_SCHEMA用于对某个用户拥有的所有TABLE,INDEX和CLUSTER的分析统计。ANALYZE_DATABASE用于对整个数据库进行分析统计。

    3) DBMS_STATS是在ORACLE8I中新增的程序包,它使统计数据的生成和处理更加灵活方便,并且可以并行方式生成统计数据。在程序包中的以下过程分别分析统计TABLE,INDEX,SCHEMA,DATABASE级别的信息。

    DBMS_STATS.GATHER_TABLE_STATS
    DBMS_STATS.GATHER_INDEX_STATS
    DBMS_STATS.GATHER_SCHEMA_STATS
    DBMS_STATS.GATHER_DATABASE_STATS

    在这里,我们以数据库JOB的方式,定时对数据库中SCOTT模式下所有的表和索引进行分析:

    在SQL*PLUS下运行:

    VARIABLE jobno number;
   
BEGIN

    DBMS_JOBS.SUBMIT ( :jobno ,
    " dbms_utility.analyze_schema ( "scott", "estimate",
NULL, 20) ; ",
    sysdate, "sysdate
+30
");
   
commit
;
   
end
;
   
/

    Statement processed.
   
Print jobno
    JOBNO
   
-------------

    16

    以上作业,每隔一个月用DBMS_UTILITY.ANALYZE_SCHEMA对用户SCOTT的所有表,簇表和索引作统计分析。

这篇关于ORACLE的analyze使用简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748304

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数