详解 leetcode 221题:最大正方形

2024-02-25 11:30

本文主要是介绍详解 leetcode 221题:最大正方形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学好算法没有捷径,最好的捷径就是多刷题,并且跳出舒适区,每道题都要寻找最优解,也不能老是做那些你自己比较擅长的题,不定期更新 Leetcode 的题,每道题都会给出多种解法以及最优解。

题目描述

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例

输入: 1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0输出: 4

解法一:暴力法

在一个二维矩形中,如果我们要确定一个矩阵,我们只需要知道确定它的左上角右下角就可以了,而正方形相当于边相等的矩阵。这道题暴力法还是比较好做,就是把矩阵中的每一个点,都充当左上角来遍历搜索一下。

例如我刚开始把(0,0)这个点当左上角,然后向右下角搜索

搜索的过程中,用一个变量来记录最大正方形的面积。接着用(0,1)作为左上角,不断着向右下角搜索

当然,(0,1)这个位置本身就是 0 ,所以是没有搜索的必要的,我这里只是做个演示。最终的代码如下,代码中也有详细的介绍

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;// 记录最大边长int max = 0;for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {// 把(i,j)作为左上角向右下角搜索if (matrix[i][j] == '1') {// 此时正方形的边长int sqlen = 1;boolean flag = true;//记录是否遇到0的位置while (sqlen + i < rows && sqlen + j < cols && flag) {for (int k = j; k <= sqlen + j; k++) {if (matrix[i + sqlen][k] == '0') {flag = false;break;}}for (int k = i; k <= sqlen + i; k++) {if (matrix[k][j + sqlen] == '0') {flag = false;break;}}if (flag)sqlen++;}if (max < sqlen) {max = sqlen;}}}}return max * max;}
  • 时间复杂度:O((mn)^2)
  • 空间复杂度:O(1)

解法二:动态规划

对于动态规划,大部分情况下我们都会定义一个二维数组dp,然后定义dp[i][j] 的含义,接着推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。当然,也可以是推导 dp[i][j] 与 dp[i+1][j]、dp[i][j+1]、dp[i+1][j+1] 之间的关系,下面我们讲下用 dp 该怎么解这道题。

1、首先我们定义 dp[i][j] 含义为正方形以 dp[i][j] 作为右下角时的最大边长值

2、接着我们来推导他们的关系

显然,对于任意一点 dp[i][j],由于该点是正方形的右下角,所以该点的右边,下边,右下边都不用考虑,关心的是左边,上边,和左上边,也就是我们要推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。他们有如下关系

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

这个关系其实也不算难推,毕竟不能有 0 存在,所以只能取交他们三个点的交集。你们可以画个图,可能就比较好理解了。

代码如下:

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[][] dp = new int[rows + 1][cols + 1];int max = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {if (matrix[i-1][j-1] == '1'){dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;max = Math.max(max, dp[i][j]);}}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n*m)

解法三:动态规划优化

用动态规划时,可以说 80% 都是用二维数组,但是 80% 也都可以优化成一维数组,这很容易理解,大家看这个公式

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

通过上面的公式我们可以知道,我们要算 dp[i][j] 的值时,只需要用到 dp[i-1][j], dp[i][j-1], dp[i-1][j-1] 三个值就可以了。也就是说,我们在算矩阵 dp 第 i 行的值时,只需要用第 (i - 1) 行的值,至于(i-2)的值根本就不需要用到

所以我们只需要用一个一维数组就可以了,然后每次算出第 i 行的值,就马上用一维数组 dp[0…n] 把这行值保存起来,供计算 i+1 行时使用。

如下图

new_dp[i] 相当于二维矩阵的 dp[i][j]

dp[i] 相当于 dp[i-1][j]

dp[i-1] 相当于 dp[i-1][j]

pre 相当于 dp[i-1][j-1]。

然后用一维矩阵的话,我们每次计算出 new_dp[i] 后,就马上用 new_dp[i] 覆盖 dp[i] 的值,并且还要用一个变量 pre 来保存dp[i-1][j-1]的值。

好吧,估计你也给我绕晕了,如果不大理解,强烈建议画图模拟一下

最终代码如下

    public int maximalSquare(char[][] matrix) {if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[] dp = new int[cols + 1];int max = 0, prev = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {int temp = dp[j];if (matrix[i - 1][j - 1] == '1') {dp[j] = Math.min(Math.min(dp[j - 1], prev), dp[j]) + 1;max = Math.max(max, dp[j]);} else {dp[j] = 0;}prev = temp;}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n)

额外话

动态规划是一个比较难的算法思想,特别是对于初学者,遇到动态规划的题基本凉,我刚开始也被搞过,后来能看懂关于动态规划的答案,但是自己写不出,一气之下做了几十道动态规划的题,发现做来做去套路都差不多,于是总结出了自己的一个套路模板,从此 80% 的动态规划题都会做。所以呢,后面找个时间我得写一写我的经验,这个经验适合看得懂动态规划,但又不知道怎么下手的人,不过写这篇文章估计需要挺长时间,所以几时写还没确定,,,,大家也可以学我,直接做 50 道动态规划的题,准稳。

看完有收获?那么希望老铁别吝啬你的三连击哦

1、点赞,可以让更多的人看到这篇文章
2、关注我的原创微信公众号『苦逼的码农』,第一时间阅读我的文章,主打算法。公众号后台回复『电子书』,还送你一份电子书大礼包哦。
3、也欢迎关注我的博客哦。

公众号主页

作者简洁

作者:帅地,一位热爱、认真写作的小伙,目前维护原创公众号:『苦逼的码农』,以写了150多篇文章,专注于写 算法、计算机基础知识等提升你内功的文章,期待你的关注。
转载说明:务必注明来源(注明:来源于公众号:苦逼的码农, 作者:帅地)

这篇关于详解 leetcode 221题:最大正方形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745330

相关文章

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.