详解 leetcode 221题:最大正方形

2024-02-25 11:30

本文主要是介绍详解 leetcode 221题:最大正方形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学好算法没有捷径,最好的捷径就是多刷题,并且跳出舒适区,每道题都要寻找最优解,也不能老是做那些你自己比较擅长的题,不定期更新 Leetcode 的题,每道题都会给出多种解法以及最优解。

题目描述

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例

输入: 1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0输出: 4

解法一:暴力法

在一个二维矩形中,如果我们要确定一个矩阵,我们只需要知道确定它的左上角右下角就可以了,而正方形相当于边相等的矩阵。这道题暴力法还是比较好做,就是把矩阵中的每一个点,都充当左上角来遍历搜索一下。

例如我刚开始把(0,0)这个点当左上角,然后向右下角搜索

搜索的过程中,用一个变量来记录最大正方形的面积。接着用(0,1)作为左上角,不断着向右下角搜索

当然,(0,1)这个位置本身就是 0 ,所以是没有搜索的必要的,我这里只是做个演示。最终的代码如下,代码中也有详细的介绍

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;// 记录最大边长int max = 0;for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {// 把(i,j)作为左上角向右下角搜索if (matrix[i][j] == '1') {// 此时正方形的边长int sqlen = 1;boolean flag = true;//记录是否遇到0的位置while (sqlen + i < rows && sqlen + j < cols && flag) {for (int k = j; k <= sqlen + j; k++) {if (matrix[i + sqlen][k] == '0') {flag = false;break;}}for (int k = i; k <= sqlen + i; k++) {if (matrix[k][j + sqlen] == '0') {flag = false;break;}}if (flag)sqlen++;}if (max < sqlen) {max = sqlen;}}}}return max * max;}
  • 时间复杂度:O((mn)^2)
  • 空间复杂度:O(1)

解法二:动态规划

对于动态规划,大部分情况下我们都会定义一个二维数组dp,然后定义dp[i][j] 的含义,接着推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。当然,也可以是推导 dp[i][j] 与 dp[i+1][j]、dp[i][j+1]、dp[i+1][j+1] 之间的关系,下面我们讲下用 dp 该怎么解这道题。

1、首先我们定义 dp[i][j] 含义为正方形以 dp[i][j] 作为右下角时的最大边长值

2、接着我们来推导他们的关系

显然,对于任意一点 dp[i][j],由于该点是正方形的右下角,所以该点的右边,下边,右下边都不用考虑,关心的是左边,上边,和左上边,也就是我们要推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。他们有如下关系

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

这个关系其实也不算难推,毕竟不能有 0 存在,所以只能取交他们三个点的交集。你们可以画个图,可能就比较好理解了。

代码如下:

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[][] dp = new int[rows + 1][cols + 1];int max = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {if (matrix[i-1][j-1] == '1'){dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;max = Math.max(max, dp[i][j]);}}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n*m)

解法三:动态规划优化

用动态规划时,可以说 80% 都是用二维数组,但是 80% 也都可以优化成一维数组,这很容易理解,大家看这个公式

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

通过上面的公式我们可以知道,我们要算 dp[i][j] 的值时,只需要用到 dp[i-1][j], dp[i][j-1], dp[i-1][j-1] 三个值就可以了。也就是说,我们在算矩阵 dp 第 i 行的值时,只需要用第 (i - 1) 行的值,至于(i-2)的值根本就不需要用到

所以我们只需要用一个一维数组就可以了,然后每次算出第 i 行的值,就马上用一维数组 dp[0…n] 把这行值保存起来,供计算 i+1 行时使用。

如下图

new_dp[i] 相当于二维矩阵的 dp[i][j]

dp[i] 相当于 dp[i-1][j]

dp[i-1] 相当于 dp[i-1][j]

pre 相当于 dp[i-1][j-1]。

然后用一维矩阵的话,我们每次计算出 new_dp[i] 后,就马上用 new_dp[i] 覆盖 dp[i] 的值,并且还要用一个变量 pre 来保存dp[i-1][j-1]的值。

好吧,估计你也给我绕晕了,如果不大理解,强烈建议画图模拟一下

最终代码如下

    public int maximalSquare(char[][] matrix) {if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[] dp = new int[cols + 1];int max = 0, prev = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {int temp = dp[j];if (matrix[i - 1][j - 1] == '1') {dp[j] = Math.min(Math.min(dp[j - 1], prev), dp[j]) + 1;max = Math.max(max, dp[j]);} else {dp[j] = 0;}prev = temp;}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n)

额外话

动态规划是一个比较难的算法思想,特别是对于初学者,遇到动态规划的题基本凉,我刚开始也被搞过,后来能看懂关于动态规划的答案,但是自己写不出,一气之下做了几十道动态规划的题,发现做来做去套路都差不多,于是总结出了自己的一个套路模板,从此 80% 的动态规划题都会做。所以呢,后面找个时间我得写一写我的经验,这个经验适合看得懂动态规划,但又不知道怎么下手的人,不过写这篇文章估计需要挺长时间,所以几时写还没确定,,,,大家也可以学我,直接做 50 道动态规划的题,准稳。

看完有收获?那么希望老铁别吝啬你的三连击哦

1、点赞,可以让更多的人看到这篇文章
2、关注我的原创微信公众号『苦逼的码农』,第一时间阅读我的文章,主打算法。公众号后台回复『电子书』,还送你一份电子书大礼包哦。
3、也欢迎关注我的博客哦。

公众号主页

作者简洁

作者:帅地,一位热爱、认真写作的小伙,目前维护原创公众号:『苦逼的码农』,以写了150多篇文章,专注于写 算法、计算机基础知识等提升你内功的文章,期待你的关注。
转载说明:务必注明来源(注明:来源于公众号:苦逼的码农, 作者:帅地)

这篇关于详解 leetcode 221题:最大正方形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/m0_37907797/article/details/102914218
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/745330

相关文章

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要

Linux ls命令操作详解

《Linuxls命令操作详解》通过ls命令,我们可以查看指定目录下的文件和子目录,并结合不同的选项获取详细的文件信息,如权限、大小、修改时间等,:本文主要介绍Linuxls命令详解,需要的朋友可... 目录1. 命令简介2. 命令的基本语法和用法2.1 语法格式2.2 使用示例2.2.1 列出当前目录下的文

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印