详解 leetcode 221题:最大正方形

2024-02-25 11:30

本文主要是介绍详解 leetcode 221题:最大正方形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学好算法没有捷径,最好的捷径就是多刷题,并且跳出舒适区,每道题都要寻找最优解,也不能老是做那些你自己比较擅长的题,不定期更新 Leetcode 的题,每道题都会给出多种解法以及最优解。

题目描述

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例

输入: 1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0输出: 4

解法一:暴力法

在一个二维矩形中,如果我们要确定一个矩阵,我们只需要知道确定它的左上角右下角就可以了,而正方形相当于边相等的矩阵。这道题暴力法还是比较好做,就是把矩阵中的每一个点,都充当左上角来遍历搜索一下。

例如我刚开始把(0,0)这个点当左上角,然后向右下角搜索

搜索的过程中,用一个变量来记录最大正方形的面积。接着用(0,1)作为左上角,不断着向右下角搜索

当然,(0,1)这个位置本身就是 0 ,所以是没有搜索的必要的,我这里只是做个演示。最终的代码如下,代码中也有详细的介绍

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;// 记录最大边长int max = 0;for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {// 把(i,j)作为左上角向右下角搜索if (matrix[i][j] == '1') {// 此时正方形的边长int sqlen = 1;boolean flag = true;//记录是否遇到0的位置while (sqlen + i < rows && sqlen + j < cols && flag) {for (int k = j; k <= sqlen + j; k++) {if (matrix[i + sqlen][k] == '0') {flag = false;break;}}for (int k = i; k <= sqlen + i; k++) {if (matrix[k][j + sqlen] == '0') {flag = false;break;}}if (flag)sqlen++;}if (max < sqlen) {max = sqlen;}}}}return max * max;}
  • 时间复杂度:O((mn)^2)
  • 空间复杂度:O(1)

解法二:动态规划

对于动态规划,大部分情况下我们都会定义一个二维数组dp,然后定义dp[i][j] 的含义,接着推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。当然,也可以是推导 dp[i][j] 与 dp[i+1][j]、dp[i][j+1]、dp[i+1][j+1] 之间的关系,下面我们讲下用 dp 该怎么解这道题。

1、首先我们定义 dp[i][j] 含义为正方形以 dp[i][j] 作为右下角时的最大边长值

2、接着我们来推导他们的关系

显然,对于任意一点 dp[i][j],由于该点是正方形的右下角,所以该点的右边,下边,右下边都不用考虑,关心的是左边,上边,和左上边,也就是我们要推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。他们有如下关系

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

这个关系其实也不算难推,毕竟不能有 0 存在,所以只能取交他们三个点的交集。你们可以画个图,可能就比较好理解了。

代码如下:

    public int maximalSquare(char[][] matrix) {// 如果矩阵长或宽少于1则直接返回0if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[][] dp = new int[rows + 1][cols + 1];int max = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {if (matrix[i-1][j-1] == '1'){dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;max = Math.max(max, dp[i][j]);}}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n*m)

解法三:动态规划优化

用动态规划时,可以说 80% 都是用二维数组,但是 80% 也都可以优化成一维数组,这很容易理解,大家看这个公式

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

通过上面的公式我们可以知道,我们要算 dp[i][j] 的值时,只需要用到 dp[i-1][j], dp[i][j-1], dp[i-1][j-1] 三个值就可以了。也就是说,我们在算矩阵 dp 第 i 行的值时,只需要用第 (i - 1) 行的值,至于(i-2)的值根本就不需要用到

所以我们只需要用一个一维数组就可以了,然后每次算出第 i 行的值,就马上用一维数组 dp[0…n] 把这行值保存起来,供计算 i+1 行时使用。

如下图

new_dp[i] 相当于二维矩阵的 dp[i][j]

dp[i] 相当于 dp[i-1][j]

dp[i-1] 相当于 dp[i-1][j]

pre 相当于 dp[i-1][j-1]。

然后用一维矩阵的话,我们每次计算出 new_dp[i] 后,就马上用 new_dp[i] 覆盖 dp[i] 的值,并且还要用一个变量 pre 来保存dp[i-1][j-1]的值。

好吧,估计你也给我绕晕了,如果不大理解,强烈建议画图模拟一下

最终代码如下

    public int maximalSquare(char[][] matrix) {if(matrix.length < 1 || matrix[0].length < 1)return 0;int rows = matrix.length;int cols = matrix[0].length;int[] dp = new int[cols + 1];int max = 0, prev = 0;for (int i = 1; i <= rows; i++) {for (int j = 1; j <= cols; j++) {int temp = dp[j];if (matrix[i - 1][j - 1] == '1') {dp[j] = Math.min(Math.min(dp[j - 1], prev), dp[j]) + 1;max = Math.max(max, dp[j]);} else {dp[j] = 0;}prev = temp;}}return max * max;}
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n)

额外话

动态规划是一个比较难的算法思想,特别是对于初学者,遇到动态规划的题基本凉,我刚开始也被搞过,后来能看懂关于动态规划的答案,但是自己写不出,一气之下做了几十道动态规划的题,发现做来做去套路都差不多,于是总结出了自己的一个套路模板,从此 80% 的动态规划题都会做。所以呢,后面找个时间我得写一写我的经验,这个经验适合看得懂动态规划,但又不知道怎么下手的人,不过写这篇文章估计需要挺长时间,所以几时写还没确定,,,,大家也可以学我,直接做 50 道动态规划的题,准稳。

看完有收获?那么希望老铁别吝啬你的三连击哦

1、点赞,可以让更多的人看到这篇文章
2、关注我的原创微信公众号『苦逼的码农』,第一时间阅读我的文章,主打算法。公众号后台回复『电子书』,还送你一份电子书大礼包哦。
3、也欢迎关注我的博客哦。

公众号主页

作者简洁

作者:帅地,一位热爱、认真写作的小伙,目前维护原创公众号:『苦逼的码农』,以写了150多篇文章,专注于写 算法、计算机基础知识等提升你内功的文章,期待你的关注。
转载说明:务必注明来源(注明:来源于公众号:苦逼的码农, 作者:帅地)

这篇关于详解 leetcode 221题:最大正方形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745330

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个