hadoop mr的一些文件归属(包括临时文件的存储情况)

2024-02-25 00:59

本文主要是介绍hadoop mr的一些文件归属(包括临时文件的存储情况),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:http://blog.csdn.net/bxyz1203/article/details/8057810#comments

一、概述

一个计算的流程如下图所示,对于一个简单的wordcount的计算中,总共要经历哪些文件呢?本文将详细探讨这个话题。文章可能会重新编辑,如果想浏览最新内容请访问原创博客:http://blog.csdn.net/bxyz1203/article/details/8057810。由于作者个人知识面有限,如果描述有错误或者遗留之处敬请谅解,再欢迎指出,我们共同进步。

本文分析的是0.19.1版本。其实无论是哪个版本(除了最新的2)都差不多。


mr各种文件存储的大致目录:


二、文件存储分析
1、Client提交任务之前对此任务的一些初始化工作。
一般会在{mapred.system.dir}目录中写入job.jar、job.xml、job.split文件。
2、JobTracker初始化job的时候会从hdfs中拷贝job.xml、job.split文件,为了存储JobHistory日志及获得数据分片等一些数据。

在本地{mapred.local.dir}中存储job.xml。job.xml是client 的jobConf继承taskTracker的 jobConf得到的。

[python]  view plain copy
  1. -rw-r--r--  10 dragon.caol supergroup      14612 2012-10-10 19:19 /tmp/hadoop-dragon.caol/mapred/system/job_201210101858_0001/job.jar  
  2. -rw-r--r--   1 dragon.caol supergroup        166 2012-10-10 19:19 /tmp/hadoop-dragon.caol/mapred/system/job_201210101858_0001/job.split  
  3. -rw-r--r--   1 dragon.caol supergroup      17638 2012-10-10 19:19 /tmp/hadoop-dragon.caol/mapred/system/job_201210101858_0001/job.xml  
  4. drwxrwxrwx   - dragon.caol supergroup          0 2012-10-10 19:19 /tmp/hadoop-dragon.caol/mapred/system/job_201210101858_0001/libjars  
  5. -rw-------   1 dragon.caol supergroup          4 2012-10-10 18:59 /tmp/hadoop-dragon.caol/mapred/system/jobtracker.info  
3、TaskTracker通过心跳向JobTracker获得task后,一般是有四个task:jobsetup->map->reduce->jobclean。(对于比较简单的只有一个map与reduced的情况)对于任务的执行,map、reduce会执行一些用户的代码外,最终其实会落到OutputCommitter(其实这个也可以自定义的)的实现类上面。

jobsetup会从hdfs中拷贝job.jar、job.xml到{mapred.local.dir}中;后map、reduce的一些临时数据会存储到{mapred.local.dir}中;最后Jobclean会删除此job在TaskTracker的{mapred.local.dir}及{output}/_temporary中产生的一些临时数据。

3.1、对于map中间产生的一些临时数据。这些文件是由SpillThread线程生成的。包括 索引文件spill.n.out.index及数据文件spill.n.out等,这些文件的组织相对比较复杂。最后会被reduce调用http RESTful请求来获取。

3.2、对于reduce的一部分数据会存储到hdfs的output的_temporary中,当reduce完成时会转移最终生成文件到输出根目录。(当然对于一般的情况下,reduce开始的阶段会从map的临时文件中拷贝数据,所以一般reduce不完成,map产生的数据也不会被删除)

4、日志文件(过程中产生的,没有具体的步骤。)

4.1、JobHistory存储在{output}/_logs/history中,这个也是最后剩下在hdfs中的日志了。分为两部分,一个部分存储jobclient提交的job.xml;一部分存储执行过程中的数据。这个日志我们一般可以拿来分析任务的执行过程,例如导入Gridmix模拟线上场景做压力测试。注意这里存储的job.xml是client 的jobConf继承JobTracker的 jobConf得到的。

4.2、还有一些文件日志都是放在计算执行过程中的磁盘上,参见:附二。基本在{HADOOP_HOME}/logs文件中。此些是System.out/err及log4j产生的一些日志。对于map、reduce的任务,由于是用户自定义的,可能产生的日志量非常大,我们一般会限制日志输出的大小或者条数。



一个job执行完成,其实在{mapred.sysrem.dir}/{jobid}及{mapred.local.dir}/{jobid}数据都会删除的。最终剩下的也就是:{output}中的一些文件,一般包括:part-r-xxxxx最终结果文件及JobHistory;再就是在各个本地磁盘上面的log日志了。


ps:

附一:看下{mapred.local.dir}的目录结构<其中jobTracker、taskTracker分别在各自的机器上面>

[python]  view plain copy
  1. .  
  2. |-- jobTracker  
  3. |   `-- job_201210101610_0003.xml  
  4. `-- taskTracker  
  5.     `-- jobcache  
  6.         `-- job_201210101610_0003  
  7.             |-- attempt_201210101610_0003_m_000000_0  
  8.             |   |-- job.xml  
  9.             |   |-- output  
  10.             |   |   |-- file.out  
  11.             |   |   `-- file.out.index  
  12.             |   |-- pid  
  13.             |   `-- split.dta  
  14.             |-- attempt_201210101610_0003_m_000001_0  
  15.             |   |-- job.xml  
  16.             |   `-- work  
  17.             |-- jars  
  18.             |   |-- META-INF  
  19.             |   |   |-- MANIFEST.MF  
  20.             |   |           `-- Executor.class  
  21.             。。。。。。省去一些解压缩的文件  
  22.             |   `-- job.jar  
  23.             |-- job.xml  
  24.             `-- work  
附二:看下:logs目录: <其中 hadoop-dragon.caol-xxxx是由守护进程记录的日志,各自分散在自己的机器上;userlogs是由taskTracker产生的, 也是存储在taskTracker的机器上面;再其他都是存储在JobTracker上面。>

[python]  view plain copy
  1. .  
  2. |-- hadoop-dragon.caol-datanode-hd19-vm1.yunti.yh.aliyun.com.log  
  3. |-- hadoop-dragon.caol-datanode-hd19-vm1.yunti.yh.aliyun.com.out  
  4. |-- hadoop-dragon.caol-jobtracker-hd19-vm1.yunti.yh.aliyun.com.log  
  5. |-- hadoop-dragon.caol-jobtracker-hd19-vm1.yunti.yh.aliyun.com.out  
  6. |-- hadoop-dragon.caol-namenode-hd19-vm1.yunti.yh.aliyun.com.log  
  7. |-- hadoop-dragon.caol-namenode-hd19-vm1.yunti.yh.aliyun.com.out  
  8. |-- hadoop-dragon.caol-secondarynamenode-hd19-vm1.yunti.yh.aliyun.com.log  
  9. |-- hadoop-dragon.caol-secondarynamenode-hd19-vm1.yunti.yh.aliyun.com.out  
  10. |-- hadoop-dragon.caol-tasktracker-hd19-vm1.yunti.yh.aliyun.com.log  
  11. |-- hadoop-dragon.caol-tasktracker-hd19-vm1.yunti.yh.aliyun.com.out  
  12. |-- history  
  13. |   |-- h1_1349856617736_job_201210101610_0003_conf.xml  
  14. |   `-- h1_1349856617736_job_201210101610_0003_dragon.caol_word+count  
  15. |-- history.idx  
  16. |-- job_201210101610_0003_conf.xml  
  17. `-- userlogs  
  18.     `-- job_201210101610_0003  
  19.         |-- attempt_201210101610_0003_m_000000_0  
  20.         |   |-- log.index  
  21.         |   |-- stderr  
  22.         |   |-- stdout  
  23.         |   `-- syslog  
  24.         |-- attempt_201210101610_0003_m_000001_0  
  25.         |   |-- log.index  
  26.         |   |-- stderr  
  27.         |   |-- stdout  
  28.         |   `-- syslog  
  29.         |-- attempt_201210101610_0003_m_000002_0  
  30.         |   |-- log.index  
  31.         |   |-- stderr  
  32.         |   |-- stdout  
  33.         |   `-- syslog  
  34.         `-- attempt_201210101610_0003_r_000000_0  
  35.             |-- log.index  
  36.             |-- stderr  
  37.             |-- stdout  
  38.             `-- syslog  

这篇关于hadoop mr的一些文件归属(包括临时文件的存储情况)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743948

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

宝塔安装的MySQL无法连接的情况及解决方案

《宝塔安装的MySQL无法连接的情况及解决方案》宝塔面板是一款流行的服务器管理工具,其中集成的MySQL数据库有时会出现连接问题,本文详细介绍两种最常见的MySQL连接错误:“1130-Hostisn... 目录一、错误 1130:Host ‘xxx.xxx.xxx.xxx’ is not allowed