【C语言】内存操作,内存函数篇---memcpy,memmove,memset和memcmp内存函数的使用和模拟实现【图文详解】

本文主要是介绍【C语言】内存操作,内存函数篇---memcpy,memmove,memset和memcmp内存函数的使用和模拟实现【图文详解】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎来CILMY23的博客喔,本篇为​【C语言】内存操作,内存函数篇---memcpy,memmove,memset和memcmp内存函数的使用和模拟实现【图文详解】,图文讲解四种内存函数,带大家更深刻理解C语言中内存函数的操作,感谢观看,支持的可以给个一键三连,点赞关注+收藏。 

前言

在结束上一期字符系列篇后,本篇我们将了解四种内存操作的函数,它们分别是memcpy,memmove,memset和memcmp。

目录

一、memcpy

memcpy的介绍和使用 

 memcpy的模拟实现

二、memmove

 memmove的介绍和使用

 memmove的模拟实现

三、memset

四、memcmp 


一、memcpy

 memcpy可以在cplusplus网站查询,memcpy - C++ Reference (cplusplus.com)

函数原型如下:

void * memcpy ( void * destination, const void * source, size_t num );

函数介绍如下:

 

函数返回值和使用案例如下:

 

memcpy的介绍和使用 

 memcpy是一个复制内存空间的函数,Copy block of memory,复制内存块,将 num 字节的值从指向的位置直接复制到目标指向的内存块。

那具体是怎么使用的呢?

我们来看一个整型数组的使用案例:

#include<stdio.h>
#include<string.h>int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };int arr2[60];memcpy(arr2, arr1, 20);for (int i = 0; i < 5; i++){printf("%d", arr2[i]);}return 0;
}

结果如下:

 memcpy的模拟实现

思路: 因为我们并不知道要接收什么样的数据类型,所以可以用void *来定义数据类型,因为void*不能直接加减整数,所以我们要将其转换成char * 的一个字节指针变量,然后进行加减,最后赋值给自己。

void* my_memcpy(void* dest, const void* src, size_t num)
{assert(dest && src);void* ret = dest;while (num--){*(char*)dest = *(char*)src;dest = (char*)dest + 1;src = (char*)src + 1;}return ret;
}

 写完后,我们看案例,如果目标空间和源空间重叠了呢?

#include<stdio.h>
#include<string.h>int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };int arr2[60];memcpy(arr1+3, arr1, 20);for (int i = 0; i < 5; i++){printf("%d", arr1[i]);}return 0;
}

结果如下:

我们用自己的拷贝呢?

int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };my_memcpy(arr1+3, arr1, 20);for (int i = 0; i < 10; i++){printf("%d ", arr1[i]);}return 0;
}

结果如下: 

 

我们来看过程图:

总结:

1.memcpy的使用需要包括头文件string.h

2.函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置。
3.memcpy函数在遇到  '\0' 的时候并不会停下来。
4.如果source和destination有任何的重叠,复制的结果都是未定义的。

5.memcpy的返回值是目标空间的起始地址

二、memmove

为了解决上述情况,我们需要用到memmove来解决内存重叠的问题,memmove可以在cplusplus网站查询,memmove - C++ Reference (cplusplus.com)

函数原型如下:

void * memmove ( void * destination, const void * source, size_t num );

函数介绍如下:

函数返回值和使用案例如下:

 memmove的介绍和使用

 memmove可以解决出现内存重叠空间的情况,将 num 字节的值从指向的位置复制到目标指向的内存块。复制就像使用中间缓冲区一样进行,从而允许目标重叠。

int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };memmove(arr1+3, arr1, 20);for (int i = 0; i < 10; i++){printf("%d ", arr1[i]);}return 0;
}

结果如下: 

 memmove的模拟实现

 思路:为了解决重叠问题,我们得对src和dest的目标空间起始位置进行讨论,分两种情况,从后往前或者从前往后复制

我们发现当dest在src的右边就需要从后往前拷贝 

 

而dest在src的左边就需要从前往后拷贝 

 

当dest和src不重叠的时候,无论是从前往后,还是从后往前都可以。 

 所以一共有两种方案

方案一,我们采取dest在src前面的情况,然后其余只采用从后往前

方案二、我们采取dest >= src,并且,dest <= (char*)src+ num,

//方案一
void* my_memmove(void* dest, const void* src, size_t num)
{assert(dest && src);void* ret = dest;if (dest < src){//从前向后while (num--){*(char*)dest = *(char*)src;dest = (char*)dest + 1;src = (char*)src + 1;}}else{//从后向前while (num--){*((char*)dest + num) = *((char*)src + num);}}return ret;
}
//方案二
void* my_memmove(void* dest, const void* src, size_t num)
{assert(dest && src);void* ret = dest;if (dest > src && dest <= (char*)src +num){//从后向前while (num--){*((char*)dest + num) = *((char*)src + num);}}else{//从前向后while (num--){*(char*)dest = *(char*)src;			dest = (char*)dest + 1;src = (char*)src + 1;}}return ret;
}

二者最后的结果如下所示:

总结:
1.如果源空间和⽬标空间出现重叠,就得使用memmove函数处理。

2.memmove的使用需要包括头文件string.h

3.memmove将 num 字节的值将源指向的位置复制到目标指向的内存块。复制就像使用中间缓冲区一样进行,从而允许目标和源空间重叠。

4.memmove和memcpy函数一样在遇到  '\0' 的时候并不会停下来。

5.memmove的返回值是目标空间的起始地址

三、memset

 memset可以在cplusplus网站查询,memset - C++ 参考 (cplusplus.com)

函数原型如下:

void * memset ( void * ptr, int value, size_t num );

函数介绍如下:

 

函数返回值和使用案例如下:

 

函数的使用和介绍 

memset是用来填充内存的,填充内存的值就是函数参数中的value

#include<stdio.h>
#include<string.h>int main()
{char arr[] = "hello CILMY23";memset(arr, '1', 5);for (int i = 0; i < 13; i++){printf("%c ", arr[i]);}return 0;
}

 结果如下:

总结:

1.memset是用来设置内存的,将内存中的值以字节为单位设置成想要的内容。

2.memset的使用需要包括头文件string.h

3.memset的返回是原空间的地址

4.memset只能对字节进行操作,操作的是一个字节数

四、memcmp 

 memcmp可以在cplusplus网站查询,memcpy - C++ Reference (cplusplus.com)

函数原型如下:

int memcmp ( const void * ptr1, const void * ptr2, size_t num );

函数介绍如下:

函数返回值和使用案例如下:

 memcmp的使用

#include<stdio.h>
#include<string.h>int main()
{int arr1[] = { 1,2,3,4,5 };int arr2[] = { 1,5,6,7,8, };int ret = memcmp(arr1, arr2,5);printf("%d ", ret);return 0;
}

总结:

1.memcmp是比较从ptr1和ptr2指针指向的位置开始,向后的num个字节

2.memcmp的使用需要包括头文件string.h

3.memcmp的返回值是ptr1大于ptr2返回大于0的值,小于返回小于0的值,相等返回0

4.memcmp比较的是字节内容

感谢各位同伴的支持,本期内存函数篇就讲解到这啦,如果你觉得写的不错的话,可以给个一键三连,点赞关注+收藏,若有不足,欢迎各位在评论区讨论。   

这篇关于【C语言】内存操作,内存函数篇---memcpy,memmove,memset和memcmp内存函数的使用和模拟实现【图文详解】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743245

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof